Se presenta un protocolo para extraer el contenido total de lípidos de la pared celular de una amplia gama de micobacterias. Además, se muestran protocolos de extracción y análisis de los diferentes tipos de ácidos micólicos. También se proporciona un protocolo cromatográfico de capa delgada para monitorear estos compuestos micobacterianos.
Las especies de micobacterias pueden diferir entre sí en la tasa de crecimiento, la presencia de pigmentación, la morfología de la colonia mostrada en los medios sólidos, así como otras características fenotípicas. Sin embargo, todas tienen en común el carácter más relevante de las micobacterias: su pared celular única y altamente hidrofóbica. Las especies de micobacterias contienen un complejo unido a la membrana covalente que incluye arabinogalactano, peptidoglicano y cadenas largas de ácidos micólicos con tipos que difieren entre las especies de micobacterias. Además, las micobacterias también pueden producir lípidos que se localizan, no unidos covalentemente, en sus superficies celulares, como los dicicocerosatos de fteocerol (PDIM), los glicolípidos fenólicos (PGL), los glicopptidolípidos (GPL), las aciltrehalosas (AT) o los narizidos de fosfatidil-inositol (PIM), entre otros. Algunos de ellos se consideran factores de virulencia en micobacterias patógenas, o lípidos antigénicos críticos en la interacción huésped-micobacterias. Por estas razones, existe un interés significativo en el estudio de los lípidos micobacterianos debido a su aplicación en varios campos, desde la comprensión de su papel en la patogenicidad de las infecciones por micobacterias, hasta una posible implicación como agentes inmunomoduladores para el tratamiento de enfermedades infecciosas y otras patologías como el cáncer. Aquí, se presenta un enfoque simple para extraer y analizar el contenido total de lípidos y la composición de ácido micólico de las células de micobacterias cultivadas en un medio sólido utilizando mezclas de solventes orgánicos. Una vez obtenidos los extractos lipídicos, se realiza cromatografía de capa fina (TLC) para monitorizar los compuestos extraídos. El experimento de ejemplo se realiza con cuatro micobacterias diferentes: mycolicibacterium brumae y Mycolicibacterium fortuitum de rápido crecimiento ambiental, el bacilo atenuado de crecimiento lento Mycobacterium bovis Calmette-Guérin (BCG) y el patógeno oportunista de rápido crecimiento Mycobacterium abscessus, lo que demuestra que los métodos mostrados en el presente protocolo se pueden utilizar para una amplia gama de micobacterias.
Mycobacterium es un género que comprende especies patógenas y no patógenas, caracterizadas por tener una pared celular altamente hidrofóbica e impermeable formada por sus peculiares lípidos. Específicamente, la pared celular micobacteriana contiene ácidos micólicos, que son ácidos grasos α-alquilo y β-hidroxi, en los que la rama α es constante en todos los ácidos micólicos (excepto en la longitud) y la cadena β, llamada cadena de meromycolate, es una cadena alifática larga que puede contener diferentes grupos químicos funcionales descritos junto con la literatura (α-, α’-, metoxi-, metoxi-, κ-, epoxi-, carboxi-, y ω-1-metoxi-micolatos), produciendo así siete tipos de ácidos micólicos (I-VII)1. Además, otros lípidos con una importancia incuestionable también están presentes en la pared celular de las especies de micobacterias. Especies patógenas como Mycobacterium tuberculosis, el agente causal de la tuberculosis2 producen factores de virulencia específicos basados en lípidos como dilipocerol dimycocerosatos (PDIMs), glicolípidos fenólicos (PGL), di-, tri-, y penta-aciltrehalosas (DAT, TAT y PAT), o sulfolípidos, entre otros.3. Su presencia en la superficie micobacteriana se ha asociado con la capacidad de modificar la respuesta inmune del huésped y por tanto, la evolución y persistencia de la micobacteria dentro del huésped.4. Por ejemplo, la presencia de triacilgliceroles (TAG) se ha asociado con el fenotipo hipervirulento del linaje 2-Beijing sublinaje de M. tuberculosis, posiblemente debido a su capacidad para atenuar la respuesta inmune del huésped5,6. Otros lípidos relevantes son los lipooligosacáridos (LOS) presentes en micobacterias tuberculosas y no tuberculosas. En el caso de Mycobacterium marinum, la presencia de LOSs en su pared celular está relacionada con la motilidad deslizante y la capacidad de formar biopelículas e interfiere con el reconocimiento por parte de los receptores de reconocimiento de patrones de macrófagos, afectando la absorción y eliminación de las bacterias por los fagocitos del huésped.7,8. Además, la ausencia o presencia de algunos lípidos permite clasificar a los miembros de una misma especie en diferentes morfotipos con perfiles virulentos o atenuantes al interactuar con las células huésped. Por ejemplo, la ausencia de glicopeptidolípidos (GPL) en el morfotipo rugoso de Mycobacterium abscessus se ha asociado con la capacidad de inducir acidificación intrafagosómica y, en consecuencia, apoptosis celular9, a diferencia del morfotipo liso que posee G L GPL en su superficie. Además, el contenido de lípidos de la pared celular micobacteriana está relacionado con la capacidad de modificar la respuesta inmune en el huésped. Esto es relevante en el contexto del uso de algunas micobacterias para desencadenar un perfil inmune protector contra diferentes patologías.10,11,12,13. Se ha demostrado, por ejemplo, que Mycolicibacterium vaccae, una micobacteria saprófita, que actualmente se encuentra en ensayos clínicos de fase III como vacuna inmunoterapéutica para la tuberculosis, muestra dos morfotipos coloniales. Mientras que el fenotipo liso, que contiene un poliéster en su superficie, desencadena una respuesta Th2, el fenotipo rugoso desprovisto del poliéster puede inducir un perfil Th1 cuando interactúa con las células inmunes del huésped.14. El repertorio de lípidos presentes en la célula micobacteriana no solo depende de las especies de micobacterias, sino también de las condiciones de los cultivos de micobacterias: tiempo de incubación.15,16 o composición del medio de cultivo17,18. De hecho, los cambios en la composición del medio de cultivo afectan a la actividad antitumoral e inmunoestimuladora de M. bovis BCG y Mycolicibacterium brumae in vitro17. Además, el perfil inmune protector desencadenado por M. bovis BCG contra M. tuberculosis El desafío en modelos de ratones también depende de los medios de cultivo en los que M. bovis BCG crece17. Estos podrían estar relacionados con la composición lipídica de las micobacterias en cada condición de cultivo. Por todas estas razones, el estudio del contenido lipídico de las micobacterias es relevante. Se presenta un procedimiento visual para extraer y analizar la composición lipídica de la pared celular micobacteriana.
Se presenta un protocolo simple considerado como el método estándar de oro para la extracción de compuestos lipídicos no unidos covalentemente de la pared celular micobacteriana. Se muestra una visualización adicional por TMIC unidimensionales y bidimensionales de los lípidos extraídos de cuatro micobacterias diferentes.
Dos mezclas combinadas consecutivas de cloroformo y metanol para recuperar el contenido lipídico de las células micobacterianas es la mezcla de disolventes más utili…
The authors have nothing to disclose.
Esta investigación fue financiada por el Ministerio de Ciencia, Innovación y Universidades (RTI2018-098777-B-I00), los Fondos FEDER y la Generalitat de Catalunya (2017SGR-229). Sandra Guallar-Garrido es beneficiaria de un contrato de doctorado (FI) de la Generalitat de Catalunya.
Acetic Acid | Merck | 100063 | CAUTION. Anhydrous for analysis EMSURE® ACS,ISO,Reag. Ph Eur |
Acetone | Carlo Erba | 400971N | CAUTION. ACETONE RPE-ACS-ISO FOR ANALYS ml 1000 |
Anthrone | Merck | 8014610010 | Anthrone for synthesis. |
Benzene | Carlo Erba | 426113 | CAUTION. Benzene RPE – For analysis – ACS 2.5 l |
Capillary glass tube | Merck | BR708709 | BRAND® disposable BLAUBRAND® micropipettes, intraMark |
Chloroform | Carlo Erba | 412653 | CAUTION. Chloroform RS – For HPLC – Isocratic grade – Stabilized with ethanol 2.5 L |
Dry block heater | J.P. Selecta | 7471200 | |
Dicloromethane | Carlo Erba | 412622 | CAUTION. Dichloromethane RS – For HPLC – Isocratic grade – Stabilized with amylene 2.5 L |
Diethyl ether | Carlo Erba | 412672 | CAUTION. Diethyl ether RS – For HPLC – Isocratic grade – Not stabilized 2.5 L |
Ethyl Acetate | Panreac | 1313181211 | CAUTION. Ethyl acetate (Reag. USP, Ph. Eur.) for analysis, ACS, ISO |
Ethyl Alcohol Absolute | Carlo Erba | 4146072 | CAUTION. Ethanol absolute anhydrous RPE – For analysis – ACS – Reag. Ph.Eur. – Reag. USP 1 L |
Glass funnel | VidraFOC | DURA.2133148 1217/1 | |
Glass tube | VidraFOC | VFOC.45066A-16125 | Glass tube with PTFE recovered cap |
Methanol | Carlo Erba | 412722 | CAUTION. Methanol RS – For HPLC – GOLD – Ultragradient grade 2.5 L |
Molybdatophosphoric acid hydrate | Merck | 51429-74-4 | CAUTION. |
Molybdenum Blue Spray Reagent, 1.3% | Sigma | M1942-100ML | CAUTION. |
n-hexane | Carlo Erba | 446903 | CAUTION. n-Hexane 99% RS – ATRASOL – For traces analysis 2.5 L |
n-nitroso-n-methylurea | Sigma | N4766 | CAUTION |
Orbital shaking platform | DDBiolab | 995018 | NB-205L benchtop shaking incubator |
Petroleum ether (60-80ºC) | Carlo Erba | 427003 | CAUTION. Petroleum ether 60 – 80°C RPE – For analysis 2.5 L |
Sprayer | VidraFOC | 712/1 | |
Sodium sulphate anhydrous | Merck | 238597 | |
Sulfuric acid 95-97% | Merck | 1007311000 | CAUTION. Sulfuric acid 95-97% |
TLC chamber | Merck | Z204226-1EA | Rectangular TLC developing tanks, complete L × H × W 22 cm × 22 cm × 10 cm |
TLC plate | Merck | 1057210001 | TLC SilicaGel 60- 20×20 cm x 25 u |
TLC Plate Heater | CAMAG | 223306 | CAMAG TLC Plat Heater III |
Toluene | Carlo Erba | 488551 | CAUTION. Toluene RPE – For analysis – ISO – ACS – Reag.Ph.Eur. – Reag.USP 1 L |
Vortex | Fisher Scientific | 10132562 | IKA Agitador IKA vórtex 3 |
1-naphthol | Sigma-Aldrich | 102269427 | CAUTION. |