広範囲のマイコバクテリアの細胞壁の総脂質含有量を抽出するプロトコルが提示される。さらに、異なる種類のマイコール酸の抽出および分析プロトコルが示されている。これらのマイコバクテリア化合物をモニタリングする薄層クロマトグラフィープロトコルも提供される。
マイコバクテリア種は、成長速度、色素沈着の存在、固体培地に表示されるコロニー形態、ならびに他の表現型特性において互いに異なることができます。しかし、それらはすべてマイコバクテリアの最も関連性の高い特徴である、そのユニークで疎水性の高い細胞壁を共通しています。マイコバクテリア種には、アラビノガラクタン、ペプチドグリカン、マイコバクテリア種によって異なるタイプのマイコリン酸の長鎖を含む膜共有結合複合体が含まれています。さらに、マイコバクテリアは、フチオセロールジミコセローサイト(PDIM)、フェノール系糖脂質(PGL)、グリコペプチド脂質(GPL)、アシルトレハロース(AT)、またはホスファトリジルイノシトールマンノシド(PIM)などの細胞表面に位置する、非共有結合の脂質を産生することもできる。それらのいくつかは、病原性抗酸菌の病原性因子、または宿主-マイコバクテリア相互作用における重要な抗原脂質と考えられている。これらの理由から、マイコバクテリア感染症の病原性における役割を理解することから、感染症や癌などの他の病理の治療に免疫調節剤として可能な意味まで、いくつかの分野での適用によるマイコバクテリア脂質の研究に大きな関心があります。ここでは、有機溶媒の混合物を用いて固体培地で増殖したマイコバクテリア細胞の総脂質含量およびマイコリン酸組成を抽出して分析する簡単なアプローチが提示される。脂質抽出物が得られると、薄層クロマトグラフィー(TLC)が行われ、抽出された化合物をモニタリングします。実験例は、4つの異なる抗酸菌で行われます:環境の急速に成長している 抗酸菌ブルマエマと抗腸菌、 減衰して成長し遅い マイコバクテリウム・ボビス ・バチルス・カルメット・ゲリン(BCG)と日和見病原体の急速に成長する マイコバクテリウム膿瘍を、 本プロトコルに示す方法が広範囲のマイコバクテリアに使用できることを実証した。
Mycobacterium 病原性および非病原性種を含む属であり、その特異な脂質によって形成される疎水性の高い不透過性の細胞壁を有することを特徴とする。具体的には、マイコバクテリア細胞壁には、αアルキルおよびβヒドロキシ脂肪酸であるマイコール酸が含まれており、α枝はすべてのミコール酸(長さを除く)で一定であり、メロミルコレート鎖と呼ばれるβ鎖は、文献と共に記述された異なる機能性化学基を含む可能性のある長い脂肪族鎖である(α、α、meoxyth κ-、エポキシ-、カルボキシ-およびω-1-メトキシ-マイコレート、従って7種類のマイコール酸(I-VII)を生産する1.また、他の脂質は、重要でない他の脂質も、マイコバクテリア種の細胞壁に存在する。病原種など Mycobacterium tuberculosis, 結核の原因物質2 フチオセロール・ジミコセローサイト(PDIMs)、フェノール糖脂質(PGL)、ジ、トリ、ペンタ・アシルトロース(DAT、TAT、PAT)、またはスルフォ脂質などの特異的脂質ベースの病原性因子を産生する。3.抗酸菌表面での彼らの存在は、宿主の免疫応答を修飾する能力と関連しており、したがって、宿主内の抗酸菌の進化および持続性4.例えば、トリアシルグリセロール(TAG)の存在は、2-北京のリネージュの過敏な表現型と関連している M. tuberculosis, おそらく、宿主の免疫応答を減衰する能力が原因で5,6.他の関連する脂質は、結核性および非結核性抗酸菌に存在するリプーリゴ糖(LOS)である。の場合 Mycobacterium marinumその細胞壁におけるLOSの存在は、滑走運動性とバイオフィルムを形成する能力に関連しており、マクロファージパターン認識受容体による認識を妨げ、宿主食細胞による細菌の取り込みおよび除去に影響を及ぼす7,8.さらに、いくつかの脂質の存在または存在は、同じ種のメンバーが宿主細胞と相互作用する際に、毒性または減衰プロファイルを有する異なる形態型に分類することを可能にする。例えば、大まかな形態型における糖ペプチド脂質(GPL)の欠如 Mycobacterium abscessus は、咽頭内酸性化を誘導する能力に関連しており、結果的に細胞アポトーシス9表面にGACLを持つ滑らかな形態とは異なり。さらに、マイコバクテリア細胞壁の脂質含有量は、宿主における免疫応答を改変する能力に関連している。これは、異なる病理に対する保護免疫プロファイルをトリガーするためにいくつかのマイコバクテリアを使用する文脈で関連しています10,11,12,13. 例えば、それが実証されている。 Mycolicibacterium vaccae結核の免疫療法ワクチンとして現在第III相臨床試験中の天癌性抗酸菌は、2つの植民地形態を示す。表面にポリエステルを含む滑らかな表現型はTh2応答を引き起こすが、ポリエステルを欠いた粗い表現型は宿主免疫細胞と相互作用する際にTh1プロファイルを誘導することができる14.マイコバクテリア細胞に存在する脂質のレパートリーは、マイコバクテリア種だけでなく、マイコバクテリア培養の条件にも依存する:インキュベーションの時間15,16 または培養培地の組成17,18.実際、培地組成の変化は、抗腫瘍および免疫刺激活性に影響を及ぼす M. bovis BCGと Mycolicibacterium brumae in vitro17.さらに、保護免疫プロファイルは、次の M. bovis に対する BCG M. tuberculosis マウスモデルにおける挑戦は、培養メディアによっても依存し、 M. bovis BCGが成長17.これらは、各培養条件におけるマイコバクテリアの脂質組成に関連する可能性があります。これらすべての理由から、マイコバクテリアの脂質含有量の研究は関連しています。マイコバクテリア細胞壁の脂質組成を抽出し、分析する目視的手順を提示する。
マイコバクテリア細胞壁から非共有結合脂質化合物を抽出するためのゴールドスタンダード法として考えられる簡単なプロトコルが提示される。さらに、4つの異なるマイコバクテリアの抽出脂質から1次元および2次元TlCsによる可視化が示されている。
マイコバクテリア細胞の脂質含量を回収するクロロホルムとメタノールの2つの連続した混合物は、最も広く使用されて…
The authors have nothing to disclose.
この研究は、スペイン科学イノベーション大学省(RTI2018-098777-B-I00)、FEDERファンド、カタルーニャのジェネラリタット(2017SGR-229)によって資金提供されました。サンドラ・グアラ=ガリドは、ジェネラリタット・デ・カタルーニャから博士号契約(FI)を受け取っています。
Acetic Acid | Merck | 100063 | CAUTION. Anhydrous for analysis EMSURE® ACS,ISO,Reag. Ph Eur |
Acetone | Carlo Erba | 400971N | CAUTION. ACETONE RPE-ACS-ISO FOR ANALYS ml 1000 |
Anthrone | Merck | 8014610010 | Anthrone for synthesis. |
Benzene | Carlo Erba | 426113 | CAUTION. Benzene RPE – For analysis – ACS 2.5 l |
Capillary glass tube | Merck | BR708709 | BRAND® disposable BLAUBRAND® micropipettes, intraMark |
Chloroform | Carlo Erba | 412653 | CAUTION. Chloroform RS – For HPLC – Isocratic grade – Stabilized with ethanol 2.5 L |
Dry block heater | J.P. Selecta | 7471200 | |
Dicloromethane | Carlo Erba | 412622 | CAUTION. Dichloromethane RS – For HPLC – Isocratic grade – Stabilized with amylene 2.5 L |
Diethyl ether | Carlo Erba | 412672 | CAUTION. Diethyl ether RS – For HPLC – Isocratic grade – Not stabilized 2.5 L |
Ethyl Acetate | Panreac | 1313181211 | CAUTION. Ethyl acetate (Reag. USP, Ph. Eur.) for analysis, ACS, ISO |
Ethyl Alcohol Absolute | Carlo Erba | 4146072 | CAUTION. Ethanol absolute anhydrous RPE – For analysis – ACS – Reag. Ph.Eur. – Reag. USP 1 L |
Glass funnel | VidraFOC | DURA.2133148 1217/1 | |
Glass tube | VidraFOC | VFOC.45066A-16125 | Glass tube with PTFE recovered cap |
Methanol | Carlo Erba | 412722 | CAUTION. Methanol RS – For HPLC – GOLD – Ultragradient grade 2.5 L |
Molybdatophosphoric acid hydrate | Merck | 51429-74-4 | CAUTION. |
Molybdenum Blue Spray Reagent, 1.3% | Sigma | M1942-100ML | CAUTION. |
n-hexane | Carlo Erba | 446903 | CAUTION. n-Hexane 99% RS – ATRASOL – For traces analysis 2.5 L |
n-nitroso-n-methylurea | Sigma | N4766 | CAUTION |
Orbital shaking platform | DDBiolab | 995018 | NB-205L benchtop shaking incubator |
Petroleum ether (60-80ºC) | Carlo Erba | 427003 | CAUTION. Petroleum ether 60 – 80°C RPE – For analysis 2.5 L |
Sprayer | VidraFOC | 712/1 | |
Sodium sulphate anhydrous | Merck | 238597 | |
Sulfuric acid 95-97% | Merck | 1007311000 | CAUTION. Sulfuric acid 95-97% |
TLC chamber | Merck | Z204226-1EA | Rectangular TLC developing tanks, complete L × H × W 22 cm × 22 cm × 10 cm |
TLC plate | Merck | 1057210001 | TLC SilicaGel 60- 20×20 cm x 25 u |
TLC Plate Heater | CAMAG | 223306 | CAMAG TLC Plat Heater III |
Toluene | Carlo Erba | 488551 | CAUTION. Toluene RPE – For analysis – ISO – ACS – Reag.Ph.Eur. – Reag.USP 1 L |
Vortex | Fisher Scientific | 10132562 | IKA Agitador IKA vórtex 3 |
1-naphthol | Sigma-Aldrich | 102269427 | CAUTION. |