A versatile twin-screw extrusion process to provide an efficient thermo-mechano-chemical pretreatment on lignocellulosic biomass was developed, which leads to an increased average fiber aspect ratio. A natural binder can also be added continuously after fiber refining, leading to bio-based fiberboards with improved mechanical properties after hot pressing of the obtained extruded material.
A versatile twin-screw extrusion process to provide an efficient thermo-mechano-chemical pre-treatment on lignocellulosic biomass before using it as source of mechanical reinforcement in fully bio-based fiberboards was developed. Various lignocellulosic crop by-products have already been successfully pre-treated through this process, e.g., cereal straws (especially rice), coriander straw, shives from oleaginous flax straw, and bark of both amaranth and sunflower stems.
The extrusion process results in a marked increase in the average fiber aspect ratio, leading to improved mechanical properties of fiberboards. The twin-screw extruder can also be fitted with a filtration module at the end of the barrel. The continuous extraction of various chemicals (e.g., free sugars, hemicelluloses, volatiles from essential oil fractions, etc.) from the lignocellulosic substrate, and the fiber refining can, therefore, be performed simultaneously.
The extruder can also be used for its mixing ability: a natural binder (e.g., Organosolv lignins, protein-based oilcakes, starch, etc.) can be added to the refined fibers at the end of the screw profile. The obtained premix is ready to be molded through hot pressing, with the natural binder contributing to fiberboard cohesion. Such a combined process in a single extruder pass improves the production time, production cost, and may lead to reduction in plant production size. Because all the operations are performed in a single step, fiber morphology is better preserved, thanks to a reduced residence time of the material inside the extruder, resulting in enhanced material performances. Such one-step extrusion operation may be at the origin of a valuable industrial process intensification.
Compared to commercial wood-based materials, these fully bio-based fiberboards do not emit any formaldehyde, and they could find various applications, e.g., intermediate containers, furniture, domestic flooring, shelving, general construction, etc.
Extrusion is a process during which a flowing material is forced through a hot die. Extrusion, therefore, permits the forming of preheated products under pressure. The first industrial single-screw extruder appeared in 1873. It was used for the manufacture of metallic continuous cables. From 1930 onwards, single-screw extrusion was adapted to the food industry to produce sausages and past. Conversely, the first twin-screw extruder has first been used for developments in the food industry. It did not appear in the field of synthetic polymers until the 1940s. For this purpose, new machines were designed, and their operation was also modeled1. A system with co-penetrating and co-rotating screws was developed, allowing mixing and extrusion to be carried out simultaneously. Since then, the extrusion technology has developed continuously via the design of new types of screws. Today, the food industry makes extensive use of twin-screw extrusion although it is more expensive than single-screw extrusion as twin-screw extrusion permits access to more elaborated material processing and final products. It is particularly used for extrusion-cooking of starchy products but also the texturing of proteins and the manufacture of pet food and fish feed.
More recently, twin-screw extrusion has seen its field of application extended to the thermo-mechano-chemical fractionation of plant matter2,3. This new concept has led to the development of real reactors capable of transforming or fractionating plant matters in a single step, up to the separate production of an extract and a raffinate by liquid/solid separation2,3,4. Work carried out at the Laboratory of Agro-industrial Chemistry (LCA) has highlighted the multiple possibilities of the twin-screw technology for the fractionation and valorization of agroresources2,3. Some of the examples are: 1) The mechanical pressing and/or "green" solvent extraction of vegetable oil5,6,7,8,9,10. 2) The extraction of hemicelluloses11,12, pectins13, proteins14,15, and polyphenolic extracts16. 3) The enzymatic degradation of plant cell walls for producing second-generation bioethanol17. 4) The production of biocomposite materials with protein18 or polysaccharide19 matrices. 5) The production of thermoplastic materials by mixing cereals, and bio-based polyesters20,21. 6) The production of biocomposites by compounding a thermoplastic polymer, bio-based or not, and plant fillers22,23. 7) The defibration of lignocellulosic materials for producing paper pulp13,24, and fiberboards25,26,27,28,29,30,31,32.
The twin-screw extruder is often considered as a continuous thermo-mechano-chemical (TMC) reactor. Indeed, it combines in a single step chemical, thermal, and, also, mechanical actions. The chemical one results in the possibility to inject liquid reagents in various points along the barrel. The thermal one is possible due to the thermal regulation of the barrel. Lastly, the mechanical one depends on the choice of the screw elements along the screw profile.
For the defibration of lignocellulosic materials to produce fiberboards, the most recent works have used rice straw25,28, coriander straw26,29, oleaginous flax shives27 as well as sunflower30,32 and amaranth31 barks. The current interest of lignocellulosic biomasses for such an application (i.e., mechanical reinforcement) is explained by the regular depletion of forest resources used for producing wood-based materials. Crop residues are inexpensive and may be widely available. In addition, current wood particles are mixed with petrochemical resins which can be toxic. Often accounting for more than 30% of the total cost of current commercial materials33, some resins contribute to formaldehyde emissions and reduce indoor air quality34. Research interest has shifted to the use of natural binders.
Lignocellulosic biomass is mainly composed of cellulose and hemicelluloses, forming a heterogeneous complex. Hemicelluloses are impregnated with layers of lignins that form a three-dimensional network around these complexes. The use of lignocellulosic biomass for the manufacture of fiberboards generally requires a defibration pre-treatment. For this, it is necessary to break down the lignins that protect cellulose and hemicelluloses. Mechanical, thermal, and chemical35 or even enzymatic36,37,38 pre-treatments must be applied. These steps also increase self-adhesion of fibers, which can promote the production of binderless boards27 even if an exogenous binder is most often added.
The primary purpose of pre-treatments is to improve the particle size profile of micrometric fibers. A simple grinding offers the possibility to reduce the fiber size27,39,40. Inexpensive, it contributes to increase the fiber specific surface. The components of the inner cell wall become more accessible and the mechanical properties of the obtained panels are improved. The efficiency of defibration is significantly increased when a thermo-mechanical pulp is produced, e.g., by digestion plus defibration41, from different pulping processes42 or by steam explosion43,44,45,46,47. More recently, LCA has developed an original pre-treatment of lignocellulosic fibers using twin-screw extrusion25,26,27,28,29,30,31,32. After TMC defibration, the extruder also enables the homogeneous dispersion of a natural binder inside fibers. The resulting premix is ready to be hot pressed into fiberboards.
During the defibration of rice straw, twin-screw extrusion was compared to a digestion plus defibration process25. The extrusion method revealed a significantly reduced cost, i.e., nine times lower than the pulping one. Furthermore, the amount of added water is reduced (1.0 max liquid/solid ratio instead of 4.0 min with the pulping method), and a clear increase in the average aspect ratio of refined fibers (21.2-22.6 instead of 16.3-17.9) is observed as well. These fibers present highly improved mechanical strengthening capability. This was demonstrated for rice straw-based fiberboards, in which pure non deteriorated lignin (e.g., Biolignin) was used as a binder (up to 50 MPa for bending strength and 24% for thickness swelling after 24 h immersion in water)28.
The interest of TMC defibration in twin-screw extruder has also been confirmed with coriander straw26. The aspect ratio of refined fibers varies from 22.9-26.5 instead of only 4.5 for simply ground fibers. 100% coriander-based fiberboards were obtained by adding to the extrusion-refined straws a cake from the seed as protein binder (40% in mass). Their flexural strength (up to 29 MPa) and especially their resistance to water (up to 24% thickness swelling) were significantly improved compared to panels made from simply crushed straw. Moreover, these panels do not emit formaldehyde and, as a consequence, they are more environmentally and human-health friendly than medium-density fiberboard (MDF) and chipboard29 classically found in the market.
Similarly, panels entirely based on amaranth31 and sunflower32, combining extrusion-refined fibers from bark as reinforcement and seed cake as a protein binder, were successfully produced. They showed flexural strengths of 35 MPa and 36 MPa, respectively. However, their water resistance was found to be lower: 71% and 87%, respectively, for thickness swelling. Self-bonded panels based on extrusion-refined shives from oleaginous flax straw can also be obtained27. In this case, it is the ligneous fraction, released during the twin-screw TMC defibration, that contributes to the self-bonding. However, hardboards obtained show a lower mechanical strength (only 12 MPa flexural strength), and very high thickness swelling (127%).
All the extruded fiber-based panels presented above can find industrial applications and are, therefore, sustainable alternatives to current commercial wood-based materials. According to the International Organization for Standardization (ISO) requirements48,49,50, their specific applications will depend on their mechanical and water sensitivity characteristics.
In this paper, the procedure to extrude and refine lignocellulosic fibers before using them as mechanical reinforcement in renewable boards is described in detail. As a reminder, this process reduces the amount of water to be added in comparison to traditional pulping methodologies, and it is also less energy consuming25. The same twin-screw machine can also be used for adding a natural binder to fibers.
More specifically, a detailed outline for conducting the twin-screw extrusion-refining of shives from oleaginous flax (Linum usitatissimum L.) straw is presented. The straw used in this study was commercially obtained. It was from the Everest variety, and the plants were cultivated in the South West part of France in 2018. In the same extruder pass, a plasticized linseed cake (used as exogenous binder) can also be added in the middle of the barrel, and then mixed intimately to the refined shives along the second half of the screw profile. A homogeneous mixture having the form of a fluffy material is collected at the machine outlet. The one-step TMC operation is conducted using a pilot scale machine. Our goal is to provide a detailed procedure for the operators to conduct properly the extrusion-refining of shives, and then the cake addition. Following this operation, the obtained premix is ready for subsequent manufacture of 100% oleaginous flax-based hardboards using hot pressing.
1. Prepare the raw materials
2. Check the proper functioning of the constant weight feeders and the piston pump
3. Prepare the twin-screw extruder
4. Carry out the twin-screw extrusion treatment according to configuration (step 3.1.1) or configuration (step 3.1.2)
5. Dry and condition the resulting extrudates (i.e., extrusion-refined shives or premix)
6. Mold the fiberboards by hot pressing
NOTE: The operating conditions for hot pressing have been chosen on the basis of previous studies26,27,31,32.
7. Condition and characterize the fiberboards
During the fiber refining of oleaginous flax shives using configuration (step 3.1.1), water was deliberately added at a liquid/solid ratio equal to 1.0. According to previous works25,26,27, such a liquid/solid ratio better preserves the length of the refined fibers at the twin-screw extruder outlet than lower ratios, which simultaneously contributes to an increase in their average aspect ratio. Furthermore, the amount of water added is low enough to eliminate any risk of machine clogging. In the absence of "free" water (i.e., water that would have been added in excess, and part of which would not have been absorbed by the fibers), it was, therefore, not necessary to position a filtration module at the end of the defibration zone. Following the extrusion-refining pre-treatment, the chemical composition of the extrusion-refined fibers was determined (Table 3). Logically, in the absence of liquid extract generation during the extrusion-refining pre-treatment, no significant difference in chemical composition was observed between the raw shives and the extruded ones. In terms of appearance, the extrusion-refined fibers have the form of a fluffy material (Figure 4, bottom left). This means that the extrusion process, in particular the high shear rate applied, contributes to a modification of the flax shives structure. This was first confirmed by the lower apparent and tapped densities of the extruded shives compared to the values obtained with the raw shives (Table 4). The morphological analysis of the fibers also confirmed this first observation as a very significant increase in their aspect ratio is also observed using a fiber morphology analysis device (Table 5).
When considering binderless boards from oleaginous flax shives molded using hot pressing, the TMC defibring pre-treatment using twin-screw extrusion according to configuration (step 3.1.1) is of obvious interest. Indeed, a separation of lignins from cellulose and hemicelluloses inside extruded shives takes place. During hot pressing, lignins can thus be easily mobilized and used as a natural binder. In addition, with a higher average fiber aspect ratio than for raw shives, the particle size profile of the extrusion-refined fibers is more favorable in terms of their performance for mechanical reinforcement. This means that boards made from extruded fibers alone (board numbers 1, 3, and 7), i.e., without the addition of plasticized linseed cake as an external binder, are not only all three cohesive, but above all present significantly improved usage properties in comparison to the board obtained by hot pressing of the raw shives (board number 11) (Table 6). Although the board number 1 from the extruded shives is hot pressed at a pressure of only 10 MPa, it is even significantly better from the point of view of its mechanical performance than board number 11, which is molded from the raw shives, but at a pressure value three times higher (30 MPa). The advantages of the pre-treatment in the twin-screw extruder for the subsequent mobilization of the lignins as internal binder on the one hand, and for increasing the average fiber aspect ratio on the other hand, are thus clearly demonstrated. A comparison of the usage properties of board numbers 1, 3, and 7 also shows the beneficial effects of higher applied pressure during molding on these properties, whether it is the flexural strength, the Shore D surface hardness, or the water resistance of the material after immersion. As the pressure increases, the mobilization of the lignin-based binder is promoted27. In the molten phase, its viscosity is reduced, and wetting of the fibers is optimized.
Using configuration (step 3.1.2), once the shives were defibrated, the plasticized linseed cake was also added directly into the twin-screw extruder and intimately mixed with the refined fibers in the second half of the screw profile. The plasticized linseed cake was added at contents between 10% and 25% (Table 1). Intimate mixing was obtained thanks to the use of two successive series of bilobe paddles (BB elements), mounted in staggered rows (90°). These are positioned at the level of modules 7 and 8 (Figure 3). When the plasticized linseed cake is added, the observed increase of total specific energy consumption is very small despite a higher filling of the machine: 1.35 ± 0.04 kW h/kg of dry matter max instead of 1.28 ± 0.05 kW h/kg of dry matter in the case of configuration (step 3.1.1) for which the shives are defibrated but without the addition of exogenous binder. The CF1C reverse screw elements used for shives defibration are, therefore, the most restrictive elements of the screw profile. The mixing zone of the refined fibers and linseed cake, therefore, contributes in a small extent to the increase in the overall energy consumption of the machine.
The addition of the plasticized linseed cake to the extrusion-refined fibers results in a premix enriched with natural binder, which must be dried to a moisture content of between 3% and 4% before molding. Overall, this addition increases the flexural properties of the fiberboards obtained (Table 6). For an applied pressure of 10 MPa, the addition of 25% linseed cake leads to a 15% increase in the flexural strength of the material (comparison of board numbers 1 and 2). For a doubled pressure (20 MPa), an increase of 25% is observed when 10% flax-based binder is added (board number 4) and it rises to 53% when 17.5% of this binder is added (board number 5). Finally, for the highest forming pressure (30 MPa), the relative increase in bending strength is maximum (+12%) when 10% linseed cake is added (comparison of board numbers 7 and 8).
At the same time, the Shore D surface hardness and the water resistance of the fiberboards after immersion are largely independent of the plasticized linseed cake content in the premix. The application of a pressure of at least 20 MPa during hot pressing is still accompanied by a reduction in thickness swelling, regardless of the exogenous binder content. Under such forming conditions, the density of hardboards increases. Their internal porosity is then reduced, and the diffusion of water inside the material during immersion is thus reduced.
The role of exogenous binder played by the linseed cake in the premix is thus confirmed and explained by the presence of a significant content (estimated at 40.5% of its dry mass52) of proteins with plastic and adhesive behavior. This role is also confirmed when the oleaginous flax protein-based binder is added to the raw shives. Indeed, with 25% of this binder (case of board number 12), the board obtained (Figure 4, top right) has a flexural strength of 10.6 MPa instead of only 3.6 MPa without binder (board number 11). However, this panel has a lower bending strength than all those based on the extrusion-refined fibers, illustrating the essential role played by the TMC pre-treatment of the shives.
Thanks to the combined action of defibration of the shives and the addition of an exogenous binder within the same twin-screw device, fiberboards with a bending strength of around 23 to 25 MPa are obtained. As an example, with the addition of 25% plasticized linseed cake to the premix and hot pressing of the latter by applying a 30 MPa pressure, the corresponding fiberboard (board number 10) shows a bending strength of 24.1 MPa, a flexural modulus of 4.0 GPa and an internal bond strength of 0.70 MPa (Figure 4, bottom right). Based on the recommendations of the French standard (NF) EN 312 (standard dedicated to the specifications for particleboards)53, this board already meets the mechanical requirements of type P6 boards, i.e., boards working under high stress and used in dry environments. Only its thickness swelling after immersion in water for 24 h does not meet the requirements of this standard (78% instead of 16% max). A post-curing treatment (60 °C for 30 min, then 80 °C for 30 min, then 100 °C for 45 min, then 125 °C for 60 min, and finally 150 °C for 90 min before returning to room temperature for 225 min) of this material leads to a reduction in thickness swelling of up to 49%, simultaneously with an increase in flexural strength (25.8 ± 1.0 MPa). However, this reduction in thickness swelling remains insufficient. For future work, other additional processes, e.g., coating, chemical, or steam treatment, after hot pressing should be tested to improve this dimensional stability parameter27 to a greater extent. Another original solution could be the addition of hydrophobing agent(s), e.g., vegetable oil derivatives, to the premix directly in the twin-screw extruder. In addition, as this optimal board may be used inside houses, its fire resistance will need to be evaluated before it is proposed to the market. Indeed, this characteristic is of key importance. If the fire resistance of this material proves to be insufficient, the addition of a fireproofing product to the premix directly in the twin-screw extruder should be considered before the panel is molded by hot pressing.
Figure 1: Simplified configurations of the twin-screw extruder used (A) for the only fiber refining of oleaginous flax shives, and (B) for the combined process in a single extruder pass, including the fiber refining of oleaginous flax shives, the addition of plasticized linseed cake, and then the intimate mixing of the two solids. For each of the two tested configurations, the successive unit operations are mentioned. Please click here to view a larger version of this figure.
Figure 2: Type of screw elements used along the screw profiles: (A) T2F, (B) C2F, (C) C1F, (D) CF1C, (E) BB, and (F) INO0 screw elements. (A) T2F elements are trapezoidal double-flight screws used for their conveying action. Due to the trapezoidal shape of their threads, T2F elements are non-self-cleaning screws but have very good conveying and swallowing characteristics. They are, therefore, positioned in the feeding areas of the two solids used (i.e., oleaginous flax shives, and plasticized linseed cake). (B) C2F elements are conjugated double-flight screws also used for their conveying action. The shape of their threads is conjugated, which makes the C2F elements self-cleaning screws. They are positioned where the solid and liquid coexist. (C) C1F elements are single-flight screws. In comparison to C2F elements, these conveying screws have a wider thread crest. Therefore, they have a better thrust and a higher shear effect than C2F elements. (D) CF1C elements are conjugated cut-flight, single-flight screws with left-handed pitch. These reverse screw elements are the most restrictive and most important elements of the screw profile. They allow an intense mixing and mechanical shearing of the material as well as an increase of its residence time. CF1C screws are the place where the defibration of the fibers takes place. (E) BB elements are bilobed paddles. They allow a strong mixing effect on the material. They, therefore, promote an intimate mixing action that is particularly important for homogeneously impregnating the oleaginous flax shives with the added water on the one hand, and intimately mixing the extrusion-refined fibers and plasticized linseed cake on the other. (F) INO0 elements are linking elements between double- and single-flight screws. Please click here to view a larger version of this figure.
Figure 3: Screw configurations (A) for the fiber refining only of oleaginous flax shives, and (B) for the combined process in a single extruder pass, including the fiber refining of oleaginous flax shives, the addition of plasticized linseed cake, and then the intimate mixing of the two solids. (A) When the oleaginous flax shives are only extrusion-refined, they are introduced in module 1. Then, water is injected at the end of module 2. The intimate mixing of the solid and liquid is carried out at the level of module 5. Lastly, the mechanical defibration of the fibers through mechanical shearing takes place in module 8. (B) When the combined process is conducted in a single extruder pass, the fiber refining of oleaginous flax shives is conducted in the first half of the screw profile (i.e., from modules 1 to 4), the addition of plasticized linseed cake in its middle, and the intimate mixing of the two solids along the second half of the screw profile. More precisely, the introduction of the plasticized linseed cake is made through a side feeder at the level of module 5, i.e., after the fiber refining step, and the intimate mixing of the two solids is conducted along modules 6 to 8. For the T2F, C2F, C1F, and CF1C screws, the two mentioned numbers indicate their pitch and length (as a proportion of D, the screw diameter), respectively. For the BB mixing blocks, they represent their staggering angle and length, respectively. INO0 elements are 0.25 D in length. Zones in the screw configuration with a flow-restricting effect correspond to the shaded areas. Please click here to view a larger version of this figure.
Figure 4: Photograph of OFS (top left) and ERF (bottom left) oleaginous flax shives, and board numbers 12 (top right) and 10 (bottom right). Board numbers 12 and 10 both contain 25% plasticized linseed cake. Board number 12 is made of the OFS raw shives whereas board number 10 originates from the P3 premix (i.e., contains the extrusion-refined fibers). Please click here to view a larger version of this figure.
Extrudate denomination | ERF | P1 | P2 | P3 |
Configuration | (3.1.1.) | (3.1.2.) | (3.1.2.) | (3.1.2.) |
Twin-screw extrusion conditions | ||||
Screw rotation speed (rpm) | 150 | 150 | 150 | 150 |
Inlet flow rate of oleaginous flax shives (kg/h) | 15.00 | 15.00 | 15.00 | 15.00 |
Inlet flow rate of plasticized linseed cake (kg/h) | 0.00 | 1.50 | 2.63 | 3.75 |
Inlet flow rate of injected water (kg/h) | 15.00 | 15.00 | 15.00 | 15.00 |
Table 1: Twin-screw extrusion conditions used for configurations (A) and (B). ERF, extrusion-refined fibers originating from configuration (step 3.1.1); P1, premix number 1 originating from configuration (step 3.1.2) and with 10% content (in proportion to the weight of shives) of plasticized linseed cake; P2, premix number 2 originating from configuration (step 3.1.2) and with 17.5% content (in proportion to the weight of shives) of plasticized linseed cake; P3, premix number 3 originating from configuration (step 3.1.2) and with 25% content (in proportion to the weight of shives) of plasticized linseed cake.
Fiberboard number | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 |
Raw material | ERF | P3 | ERF | P1 | P2 | P3 | ERF | P1 | P2 | P3 | OFS | OFS plus 25% (w/w) of plasticized linseed cake |
Mold temperature (°C) | 200 | 200 | 200 | 200 | 200 | 200 | 200 | 200 | 200 | 200 | 200 | 200 |
Molding time (s) | 150 | 150 | 150 | 150 | 150 | 150 | 150 | 150 | 150 | 150 | 150 | 150 |
Applied pressure (MPa) | 10 | 10 | 20 | 20 | 20 | 20 | 30 | 30 | 30 | 30 | 30 | 30 |
Table 2: Molding parameters used for the manufacture of the fiberboards. OFS, oleaginous flax shives (i.e., raw shives not previously treated through twin-screw extrusion). Made of OFS and plasticized linseed cake, the solid mixture used for producing board number 12 was obtained mechanically using a double-helix mixer.
Material | OFS27 | ERF |
Moisture (%) | 8.4 ± 0.2 | 8.3 ± 0.2 |
Minerals (% of the dry matter) | 2.0 ± 0.1 | 2.0 ± 0.1 |
Cellulose (% of the dry matter) | 45.6 ± 0.4 | 44.3 ± 0.4 |
Hemicelluloses (% of the dry matter) | 22.4 ± 0.1 | 22.8 ± 0.1 |
Lignins (% of the dry matter) | 25.1 ± 0.6 | 23.7 ± 0.5 |
Water-soluble components (% of the dry matter) | 4.1 ± 0.1 | 4.3 ± 0.1 |
Table 3: Chemical composition of oleaginous flax shives before and after the extrusion-refining pre-treatment. The contents in moisture were determined according to the ISO 665:2000 standard54. They were measured from equilibrated materials, i.e., after conditioning in a climatic chamber (60% relative humidity, 25 °C). The contents in minerals were determined according to the ISO 749:1977 standard55. The contents in cellulose, hemicelluloses, and lignins were determined using the Acid Detergent Fiber (ADF) – Neutral Detergent Fiber (NDF) method of Van Soest and Wine56,57. The contents in water-soluble compounds were determined by measuring the mass loss of the test sample after 1 h in boiling water. All measurements were conducted in duplicate. Results in the table correspond to the mean values ± standard deviations.
Material | Apparent density (kg/m3) | Tapped density (kg/m3) |
OFS27 | 117 ± 5 | 131 ± 4 |
ERF | 71 ± 1 | 90 ± 1 |
Table 4: Apparent and tapped densities of oleaginous flax shives before and after the extrusion-refining pre-treatment. The tapped density of oleaginous flax shives was measured in triplicate using a densitometer. The apparent density was obtained before compaction. Results in the table correspond to the mean values ± standard deviations. n.d., non-determined.
Material | Fibre length (µm) | Fiber diameter (µm) | Aspect ratio | Fines (%) |
OFS27 | 5804 ± 4013 | 1107 ± 669 | 6 ± 6 | n.d. |
ERF | 559 ± 27 | 20.9 ± 0.2 | 27 ± 2 | 56 ± 2 |
Table 5: Morphological characteristics of oleaginous flax shives before and after the extrusion-refining pre-treatment. The morphological analysis of raw shives (i.e., before the extrusion-refining pre-treatment) was performed by image analysis using a software from a scan of about 3,000 particles27. That of the extrusion-refined shives was conducted using an analyzerfor fiber morphology measurement and characterization. For these measurements, determinations were carried out in triplicate and, for each experiment, about 15,000 particles were analyzed. Results in the table correspond to the mean values ± standard deviations.
Fiberboard number | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 |
Bending properties | ||||||||||||
Thickness (mm) | 4.18 ± 0.07 | 5.03 ± 0.14 | 3.73 ± 0.11 | 3.88 ± 0.01 | 4.12 ± 0.02 | 4.56 ± 0.06 | 3.62 ± 0.12 | 3.81 ± 0.09 | 4.06 ± 0.12 | 4.37 ± 0.12 | 3.99 ± 0.07 | 4.69 ± 0.25 |
Density (kg/m3) | 1051 ± 16 | 1165 ± 78 | 1191 ± 59 | 1241 ± 34 | 1256 ± 41 | 1248 ± 37 | 1213 ± 54 | 1268 ± 17 | 1274 ± 23 | 1253 ± 32 | 1069 ± 19 | 1181 ± 40 |
Flexural strength (MPa) | 11.6 ± 1.0 | 13.3 ± 1.4 | 16.6 ± 1.4 | 20.9 ± 2.2 | 25.5 ± 1.9 | 22.6 ± 2.1 | 21.7 ± 1.9 | 24.4 ± 1.8 | 23.5 ± 2.1 | 24.1 ± 2.5 | 3.6 ± 0.4 | 10.7 ± 0.9 |
Elastic modulus (MPa) | 2474 ± 138 | 2039 ± 227 | 2851 ± 295 | 3827 ± 303 | 4272 ± 396 | 3806 ± 260 | 3781 ± 375 | 4612 ± 285 | 3947 ± 378 | 4014 ± 409 | 1071 ± 98 | 2695 ± 370 |
Shore D surface harness (°) | 70.7 ± 2.2 | 69.0 ± 3.0 | 70.6 ± 1.9 | 70.5 ± 2.2 | 70.3 ± 2.0 | 71.1 ± 1.8 | 69.0 ± 2.7 | 70.8 ± 2.0 | 70.0 ± 2.2 | 71.0 ± 1.7 | 61.4 ± 4.8 | 61.8 ± 3.6 |
Internal bond strength (MPa) | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | 0.70 ± 0.05 | n.d. | n.d. |
Water sensitivity after immersion in water during 24 h | ||||||||||||
Thickness swelling (%) | 139.5 ± 14.3 | 135.4 ± 10.9 | 76.1 ± 6.8 | 73.1 ± 1.8 | 82.3 ± 5.6 | 90.5 ± 3.9 | 64.0 ± 4.2 | 87.1 ± 5.6 | 100.1 ± 4.4 | 77.7 ± 2.2 | 159.9 ± 11.1 | 179.8 ± 16.3 |
Water absorption (%) | 145.4 ± 10.0 | 143.1 ± 16.2 | 66.5 ± 6.3 | 65.2 ± 3.5 | 69.1 ± 2.2 | 83.0 ± 5.0 | 54.4 ± 1.6 | 59.8 ± 1.1 | 86.3 ± 6.7 | 63.3 ± 1.7 | 156.8 ± 5.9 | 150.1 ± 7.0 |
Table 6: Mechanical properties, thickness swelling, and water absorption of the fiberboards manufactured by hot pressing. The thickness and the density were determined by weighing the test specimens, and measuring their dimensions using an electronic caliper. The bending properties were determined according to the ISO 16978:2003 standard58. The Shore D surface hardness was determined according to the ISO 868:2003 standard59. The internal bond strength was determined according to the ISO 16260:2016 standard60. The water sensitivity after immersion in water (i.e., thickness swelling and water absorption) was determined according to the ISO 16983:2003 standard61. All determinations were carried out four times. Results in the table correspond to the mean values ± standard deviations. n.d., non-determined.
The protocol outlined here describes how to process the extrusion-refining of lignocellulosic fibers before using them as mechanical reinforcement in renewable boards. Here, the twin-screw extruder used is a pilot scale machine. With screws of 53 mm in diameter (D), it is equipped with eight modules, each 4D in length, except for module 1 that has an 8D length, corresponding to a 36D total length (i.e., 1,908 mm) for the barrel. Its length is long enough to apply to the processed material the succession of several elementary operations in a single pass, i.e., feeding, compression, intimate mixing between the fibrous solid and the added water, expansion, compression, intense shearing, and then expansion. Here, the extrusion-refining pre-treatment was successfully applied to shives from oleaginous flax straw. They constitute the residue collected after the mechanical extraction of technical fibers from oleaginous flax straw using an "all fiber" extraction device51. In the same twin-screw machine, it is also possible to add an exogenous binder to the defibrated lignocellulosic biomass immediately after the extrusion-refining step. The second half of the screw profile is thus devoted to the intimate blending of the refined fibers and this external binder. Here, this is a previously plasticized linseed cake that was used as additional binder. It has been added to the refined fibers using various rates (from 10% to 25% in proportion to shives). The resulting 100% oleaginous flax-based premixes were subsequently transformed into hardboards through hot pressing.
Due to the large number of elementary operations to be applied for configuration (step 3.1.2), which allows not only the refining of the fibers but also the addition of an external binder, the length of the barrel of the machine to be used is decisive for the success of the treatment. A barrel length of at least 32D is required, although lengths of 36D or even 40D are more appropriate. The expansion of the mixture transported between two successive zones of restrictive elements is then better and this favors exchanges between the constituents of the solid mixture and the water.
In addition, the screw profile is of key importance for the twin-screw processes2,3,4. In particular, the restrictive areas (i.e., areas of intense mechanical work) must be chosen with the utmost care. Here, this leads to concerns with the reverse screw elements used for the defibration of lignocellulosic biomass, and the mixing elements needed for the impregnation of this biomass with water prior to defibration and subsequent intimate mixing of the refined fibers with natural binder. The typology of these elements (i.e., pitch of reverse screw elements, and width and stagger angle of mixing blocks), their respective lengths, and their positioning along the screw profile can be adapted to the formulation to be produced.
Similarly, the optimization of the operating conditions (i.e., inlet flow rates of solids, inlet flow rate of water, screw rotation speed, and temperature profile) will be necessary for any new formulation to be produced2,3,4. In fact, just like the screw profile, the operating conditions to be implemented will have to be adapted to the nature of each lignocellulosic biomass treated (e.g., distribution between cellulose, hemicelluloses and lignins, possible presence of other constituents, morphology, and hardness of the solid particles at the inlet, etc.). The filling rate of the twin-screw extruder can thus be adjusted to each new formulation with the aim of optimizing its residence time and increasing the productivity of the machine, while avoiding clogging.
It is, therefore, the filling rate of the twin-screw device that is the main limitation of the defibring pre-treatment presented here. Depending on the nature of the raw material to be processed, the screw profile used, and the extrusion conditions applied (i.e., input flow rates of solids, liquid/solid ratio, and screw rotation speed), the mean residence time of the mixture inside the twin-screw tool is not the same. In order to increase the productivity of the machine, the objective is always to increase the flow of treated plant material as much as possible while preserving a sufficient quality of the TMC work carried out on it.
At the screw rotation speed used during the production and chosen as close as possible to the maximum rotation speed of the twin-screw machine used to increase its productivity, the machine can be overfilled if the incoming flows of solid material(s) and water become too high. It is, therefore, important for the operators to choose the optimum filling rate to ensure that the machine is not overfilled. To avoid such clogging, the twin-screw tool should be used for a sufficiently long time, i.e., at least half an hour. The stability of the electric current consumed by its motor during the production will be the confirmation of a machine that does not overfeed. Its control panel makes it easy to follow the evolution of the electric current over time. To conclude, the twin-screw extrusion technology is, therefore, a versatile and high-performance tool to produce renewable fiberboards, free of synthetic resins. First of all, the continuous TMC defibration of lignocellulosic fibers, leading to an increase in their aptitude for mechanical reinforcement through an increase in the mean aspect ratio of the refined fibers, can be performed. The twin-screw tool can be considered as a credible alternative to other defibration methods classically used, i.e., a simple grinding, pulping processes, and steam explosion.
A recent study carried out on rice straw showed that this tool offers the possibility to better preserve the length of the fibers during their defibration than a method resulting from paper processes and involving a digestion stage followed by a defibration one25. The same study also showed that the defibration conducted in a twin-screw extruder was less water consuming and can be performed at a lower cost. During twin-screw defibration, the release of lignins also contributes in part to the cohesion (by self-bonding) of the obtained fiberboards27. These are called "self-bonded boards".
In the same twin-screw extruder and for greater compactness, it is also possible to continuously add an external binder to the previously refined fibers in variable proportions. This reduces production time and cost, as well as the dimensioning of the premix preparation unit. The overall process of pre-treatment of the fibers and preparation of the premix is thus greatly intensified before fiberboards hot-pressing. The addition of an exogenous binder also contributes to a substantial improvement in the usage properties of the materials obtained. This innovative process is, therefore, particularly versatile as it can be adapted to different lignocellulosic biomasses and different natural binders.
In the future, the excellent mixing capability of the twin-screw tool should be further exploited. For example, it could be used to complement the premix of various functional additives, e.g., hydrophobing agents to improve the water resistance of fiberboards, antifungal agents, fire retardants, colors, etc., so as to provide fully functionalized premix ready for the final molding process.
The authors have nothing to disclose.
The authors would like to express their sincere gratitude to Région Occitanie (France) that funded this research through ERDF (GEOFIBNET project, grant number MP0013559).
Analogue durometer | Bareiss | HP Shore | Device used for determining the Shore D surface hardness of fiberboards |
Ash furnace | Nabetherm | Controller B 180 | Furnace used for the mineral content determinations |
Belt dryer | Clextral | Evolum 600 | Belt dryer used for the continuous drying of extrudates at the exit of the twin-screw extruder |
Cold extraction unit | FOSS | FT 121 Fibertec | Cold extractor used for determining the fiber content inside solid materials |
Densitometer | MA.TEC | Densi-Tap IG/4 | Device used for determining apparent and tapped densities of extrudates once dried |
Double-helix mixer | Electra | MH 400 | Mixer used for preparing the solid mixture made of the raw shives and the plasticized linseed cake for producing board number 12 |
Fiber morphology analyzer | Techpap | MorFi Compact | Analyzer used for determining the morphological characteristics of extrusion-refined shives |
Gravimetric belt feeder | Coperion K-Tron | SWB-300-N | Feeder used for the quantification of the oleaginous flax shives |
Gravimetric screw feeder | Coperion K-Tron | K-ML-KT20 | Feeder used for the quantification of the plasticized linseed cake |
Hammer mill | Electra | BC P | Crusher used for the grinding of granules made of plasticized linseed cake |
Heated hydraulic press | Pinette Emidecau Industries | PEI 400-t | Hydraulic press used for molding the fiberboards through hot pressing |
Hot extraction unit | FOSS | FT 122 Fibertec | Hot extractor used for determining the water-soluble and fiber contents inside solid materials |
Image analysis software | National Institutes of Health | ImageJ | Software used for determining the morphological characteristics of raw shives |
Oleaginous flax straw | Ovalie Innovation | N/A | Raw material supplied for the experimental work |
Piston pump | Clextral DKM | Super MD-PP-63 | Pump used for the water quantification and injection |
Scanner | Toshiba | e-Studio 257 | Scanner used for taking an image of raw shives in gray level |
Side feeder | Clextral | E36 | Feeder used to force the introduction of the plasticized linseed cake inside the barrel (at the level of module 5) for configuration (b) |
Thermogravimetric analyzer | Shimadzu | TGA-50 | Analyzer used for conducting the thermogravimetric analysis of the solids being processed |
Twin-screw extruder | Clextral | Evolum HT 53 | Co-rotating and co-penetrating pilot scale twin-screw extruder having a 36D total length (D is the screw diameter, i.e., 53 mm) |
Universal oven | Memmert | UN30 | Oven used for the moisture content determinations |
Universal testing machine | Instron | 33R4204 | Testing machine used for determining the bending properties of fiberboards |
Ventilated oven | France Etuves | XL2520 | Oven used for the discontinuous drying of extrudates at the exit of the twin-screw extruder |
Vibrating sieve shaker | RITEC | RITEC 600 | Sieve shaker used for the sieving of the plasticized linseed cake |
Vibrating sieve shaker | RITEC | RITEC 1800 | Sieve shaker used for removing short bast fibers entrapped inside the oleaginous flax shives |