Vengono descritte le procedure sperimentali per l’esecuzione di etichette covalenti a base di dietilpirrocarbonato con rilevamento spettrometrico di massa. Il dietilpirrocarbonato viene semplicemente miscelato con il complesso proteico o proteico di interesse, portando alla modifica di residui di amminoacidi accessibili al solvente. I residui modificati possono essere identificati dopo la digestione proteolitica e l’analisi della cromatografia liquida/spettrometria di massa.
Caratterizzare la struttura di ordine superiore di una proteina è essenziale per comprenderne la funzione. La spettrometria di massa (SM) è emersa come un potente strumento a questo scopo, specialmente per i sistemi proteici che sono difficili da studiare con i metodi tradizionali. Per studiare la struttura di una proteina da parte della SM, vengono eseguite reazioni chimiche specifiche in soluzione che codificano le informazioni strutturali di una proteina nella sua massa. Un approccio particolarmente efficace è quello di utilizzare reagenti che modifichino covalentemente catene laterali di amminoacidi accessibili ai solventi. Queste reazioni portano ad aumenti di massa che possono essere localizzati con risoluzione a livello di residuo se combinati con digestione proteolitica e spettrometria di massa tandem. Qui descriviamo i protocolli associati all’uso del dietilpirocarbonato (DEPC) come reagente di etichettatura covalente insieme al rilevamento MS. Il DEPC è una molecola altamente elettrofila in grado di etichettare fino al 30% dei residui nella proteina media, fornendo così un’eccellente risoluzione strutturale. Il DEPC è stato utilizzato con successo insieme alla SM per ottenere informazioni strutturali per piccole proteine monodominio, come la β2-microglobulina, a grandi proteine multidominio, come gli anticorpi monoclonali.
Le proteine sono biomolecole essenziali praticamente in ogni processo fisiologico. La varietà di funzioni che le proteine svolgono sono possibili a causa delle strutture che adottano e delle interazioni che hanno con altre biomolecole. Per comprendere la funzione proteica a un livello più profondo, sono necessari strumenti biochimici e biofisici per chiarire queste importanti caratteristiche strutturali e interazioni. Tradizionalmente, la cristallografia a raggi X, la microscopia elettronica criogenica e la spettroscopia a risonanza magnetica nucleare (NMR) hanno fornito i dettagli desiderati a livello atomico per rivelare la struttura proteica. Tuttavia, numerosi sistemi proteici non possono essere interrogati da queste tecniche a causa dello scarso comportamento di cristallizzazione, della limitata disponibilità di proteine, dell’eccessiva eterogeneità del campione o delle limitazioni di peso molecolare. Di conseguenza, sono emersi metodi di analisi più nuovi che superano questi limiti. Tra le tecniche emergenti che possono fornire informazioni strutturali sulle proteine c’è la spettrometria di massa.
La spettrometria di massa (SM) misura il rapporto massa-carica (m/z) di una molecola, quindi le informazioni strutturali di ordine superiore delle proteine devono essere ottenute codificando le informazioni strutturali desiderate nella massa della proteina. Sono stati sviluppati diversi approcci per codificare queste informazioni, tra cui lo scambio idrogeno-deuterio (HDX)1,2,3,4, il crosslinking chimico (XL)5,6e l’etichettatura covalente (CL)7,8,9,10. In HDX, gli idrogenati di ammide dorsale vengono scambiati da deuterio leggermente più massicci a tassi che dipendono dall’accessibilità dei solventi e dall’estensione del legame H. L’estensione dell’HDX può essere localizzata digerendo rapidamente la proteina in frammenti peptidici prima di separare e misurare questi frammenti dallo spettrometro di massa o dissociando la proteina in un esperimento dall’alto verso il basso. Determinare il tasso di cambio fornisce ulteriori informazioni sulla dinamica proteica. HDX ha dimostrato di essere uno strumento prezioso per caratterizzare la struttura proteica nonostante le sfide associate allo scambio posteriore e la necessità di apparecchiature specializzate per massimizzare la riproducibilità. In XL-MS, le proteine reagisce con reagenti bifunzionali che collegano covalentemente catene laterali di residui adiacenti all’interno di una data proteina o tra due proteine. In questo modo, XL-MS può fornire vincoli di distanza che possono essere utilizzati per caratterizzare la struttura proteica. Le regioni della proteina che sono reticate possono essere identificate dalla digestione proteolitica seguita da analisi della cromatografia liquida (LC)-MS. Mentre XL-MS è uno strumento versatile che è stato utilizzato per studiare una varietà di complessi proteici, tra cui celle interne, l’identificazione dei prodotti XL è impegnativa e richiede software specializzato.
Cl-MS è emerso di recente come uno strumento complementare e talvolta alternativo basato sulla SM per studiare la struttura e le interazioni proteiche. In CL-MS, un complesso proteico o proteico viene modificato covalentemente con un reagente monofunzionale in grado di reagire con catene laterali esposte al solvente (Figura 1). Confrontando le estensioni di modifica di un complesso proteico o proteico in diverse condizioni, è possibile rivelare cambiamenti di conformazione, siti di legame e interfacce proteina-proteina. Dopo la reazione CL, le informazioni specifiche del sito, spesso a livello di singolo amminoacido, possono essere ottenute utilizzando i tipici flussi di lavoro di proteomica bottom-up in cui le proteine vengono digerite proteoliticamente, i frammenti peptidici sono separati da LC e i siti modificati vengono identificati utilizzando la SM tandem (MS/MS). La ricca storia della chimica bioconiutogata ha reso disponibili numerosi reagenti per esperimenti CL-MS. I reagenti CL si suddividono in due categorie generali: i) specifiche e (ii) non specifiche. Reagenti specifici reagiscono con un singolo gruppo funzionale (ad esempio, ammine libere)8,10 e sono facili da implementare, ma tendono a fornire informazioni strutturali limitate. Reagenti non specifici reagiscono con una vasta gamma di catene laterali, ma spesso richiedono attrezzature specializzate come laser o sorgenti di sincrotrone per produrre queste specie altamente reattive. I radicali idrossilici sono il reagente non specifico più comunemente usato, essendo stati applicati in impronte di radicali idrossilici (HRF)7,11,12,13 esperimenti per studiare una vasta gamma di proteine e complessi proteici in una varietà di condizioni.
Il nostro gruppo di ricerca ha utilizzato con successo un altro reagente relativamente non specifico chiamato dietilpirocarbonato (DEPC) per studiare la struttura proteica e le interazioni nel contesto degli esperimenti CL-MS14,15,16,17,18,19,20,21,22,23,24,25. DEPC offre la semplicità di reagenti specifici per l’etichettatura (cioè, non è necessaria alcuna apparecchiatura specializzata per eseguire le reazioni), reagendo con fino al 30% di amminoacidi nella proteina media. Come reagente altamente elettrofilo, il DEPC è in grado di reagire con il N-terminale e le catene laterali nucleofile di cisteina, istidina, lisina, tirosina, serina e residui di treonina. Tipicamente, viene generato un singolo prodotto di queste reazioni, con un aumento di massa di 72,02 Da. Questo singolo tipo di prodotto contrasta con i fino a 55 diversi prodotti che possono essere prodotti quando le proteine reagiscono con radicali idrossilici7. Tale chimica semplice facilita l’identificazione dei siti etichettati.
Qui, forniamo protocolli per l’utilizzo di CL-MS basato su DEPC per studiare la struttura e le interazioni proteiche. Vengono descritti i dettagli associati alla preparazione dei reagenti, alle reazioni depc-proteina, alle condizioni di digestione proteica, ai parametri LC-MS e MS/MS e all’analisi dei dati. Dimostriamo anche l’utilità dell’etichettatura DEPC fornendo risultati di esempio dalle interazioni proteina-metallo, proteina-ligando e proteina-proteina, nonché proteine che subiscono cambiamenti strutturali al riscaldamento.
Passaggi critici
Per quanto riguarda la progettazione sperimentale, si dovrebbero prendere in considerazione diversi punti per garantire risultati di etichettatura affidabili. In primo luogo, per massimizzare l’etichettatura delle proteine, è necessario evitare tamponi con gruppi fortemente nucleofili (ad esempio Tris) perché possono reagire con DEPC e abbassare l’estensione dell’etichettatura. È anche concepibile che tali tamponi possano reagire con residui etichettati, causando la rimozione dell’etichett…
The authors have nothing to disclose.
Gli autori riconoscono il sostegno dei National Institutes of Health (NIH) nell’ambito di Grant R01 GM075092. Lo spettrometro di massa Thermo Orbitrap Fusion utilizzato per acquisire alcuni dei dati qui descritti è stato acquisito con fondi della sovvenzione dei National Institutes of Health S10OD010645.
1.5 mL microcentrifuge tube | Thermo Fisher Scientific | 3448 | |
3-(N-morpholino)propanesulfonic acid | Millipore Sigma | M1254 | |
3-(N-morpholino)propanesulfonic acid sodium salt | Millipore Sigma | M9381 | |
Acclaim PepMap RSLC C18 Column | Thermo Scientific | 164537 | 300 μm x 15 cm, C18, 2 μm, 100 A |
Acetonitrile | Fisher Scientific | A998-1 | |
Diethylpyrocarbonate | Millipore Sigma | D5758 | |
HPLC-grade water | Fisher Scientific | W5-1 | |
Imidazole | Millipore Sigma | I5513 | |
Immobilized chymotrypsin | ProteoChem | g4105 | |
Immobilized trypsin, TPCK Treated | Thermo Fisher Scientific | 20230 | |
Iodoacetamide | Millipore Sigma | I1149 | |
Tris(2-carboxyethyl)phosphine | Millipore Sigma | C4706 |