Summary

运动任务条件对长期中风幸存者目标定向手臂达到运动学和树干补偿的影响

Published: May 02, 2021
doi:

Summary

该协议旨在调查任务条件对慢性中风幸存者运动策略的影响。此外,此协议可用于检查神经肌肉电刺激引起的肘部延长限制是否在非残疾成人达到目标方向的手臂时导致躯干补偿。

Abstract

躯干补偿是替代慢性中风幸存者上肢 (UE) 运动缺陷的最常见运动策略。缺乏证据来研究任务条件如何影响主干补偿和目标导向的手臂达到运动学。该议定书旨在调查任务条件(包括任务难度和复杂性)对目标定向手臂达到运动学的影响。招募了两名非残疾青年和两名患有轻度UE运动损伤的慢性中风幸存者来测试该方案。每个参与者执行目标导向臂达到四个不同的任务条件(2 个任务困难 [大目标与小目标] X 2 任务复杂性 [指向与拾取])。任务目标是达到并指向目标,或拿起位于家庭位置前 20 厘米的物体,分别用手写笔或一对筷子,以响应听觉提示。参与者执行了十次达到每个任务条件。使用三维运动捕捉摄像机系统记录躯干和手臂运动学。代表性结果表明,由于任务复杂性,运动持续时间、运动抖动和树干补偿显著增加,但并非所有参与者都面临任务困难。慢性中风幸存者比非残疾成年人明显慢、更急躁、更依赖反馈的手臂,并且明显增加补偿性躯干运动。我们的代表性结果支持此协议可用于调查任务条件对患有轻度 UE 运动损伤的慢性中风幸存者的运动控制策略的影响。

Introduction

躯干运动是最常见的策略,以弥补在中风后上肢(UE)运动缺陷1,2的个人肘部和肩部的有限自由度。先前的研究表明,中风后的个人在不同的运动任务环境中采用不同的运动策略3,4,5。动态系统电机控制理论解释运动产生于内部个体因素和外部因素,如任务条件和环境6。此外,Fitt定律解释了任务难度与运动速度之间的关系,倾向于以较慢的速度7执行难度更大的任务。在目标导向的手臂到达任务方面,Gentilucci报告说,与较大的物体8相比,人们在到达和抓住较小的物体时会减慢到达动作。然而,任务复杂性对长期中风幸存者达到运动学和补偿运动策略的目标导向手臂的影响没有得到很好的理解。先前一项研究,检查了慢性中风幸存者的指点和把握任务,表明两个不同任务之间的运动变量差异解释了由Fugl-Meyer上肢分数9测量的UE运动损伤的差异。然而,这项研究没有直接比较运动策略在指点和把握任务之间的运动变量方面有何不同。更好地了解任务条件对补偿性运动战略的影响,考虑到个别运动损伤水平,对于设计有效的治疗方案以尽量减少补偿性运动和最大限度地恢复运动损伤至关重要。因此,必须调查任务条件,特别是任务复杂性,如何影响中风后运动障碍个体的运动策略。这项拟议的研究协议将调查任务条件对非残疾成年人和中风幸存者目标导向手臂运动学的影响。该协议的目的是双重的:1) 调查任务复杂性是否影响慢性中风幸存者的躯干补偿和目标导向手臂达到运动学:2) 确定此协议能否区分非残疾成人和慢性中风幸存者之间目标定向手臂的运动学。

Protocol

苏尼上一医科大学机构审查委员会(IRB)批准了这一协议。 1. 参与者筛选 在IRB批准下,执行所有研究方法,并经《赫尔辛基宣言》批准。 招募没有任何神经或肌肉骨骼问题,防止上肢运动任务性能的非残疾成年人。 招募慢性中风幸存者,其中风发病时间至少为研究参与前六个月,且有轻度至中度上肢运动损伤,Fugl-Meyer 对上肢得分的评估显示,66 人中…

Representative Results

这些结果来自两名非残疾青年和两名患有轻度运动损伤的慢性中风幸存者的初步数据(这两名参与者的Fugl-Meyer得分在66分以上)。非残疾参与者是右手,用右手执行任务。中风参与者在中风前也是右手,两人都患有右下皮。他们还用右手执行任务。使用 Wilcoxon 签名级测试比较了人口之间和目标条件之间的这些运动变量。 肩部轨迹长度是目标定向臂到达时树干补偿的更敏感的?…

Discussion

初步结果支持,本议定书可能适合调查任务复杂性对树干补偿和目标导向的手臂达到运动学在非残疾成人和慢性中风幸存者的影响。

这些具有代表性的结果还支持,本议定书可能适合确定非残疾成年人和慢性中风幸存者之间目标定向手臂的运动性差异。这些发现与先前的研究一致,这些研究将慢性中风幸存者的目标导向手臂达到与非残疾控制9、13、14</su…

Disclosures

The authors have nothing to disclose.

Acknowledgements

作者希望感谢克里斯托弗·内维尔、吉罗拉莫·马莫利托和F·杰罗姆·帕布拉扬为制定本议定书和数据收集做出的重要贡献。

Materials

A pair of chopsticks NA NA 20 cm length, one chopstick had the passive motion capture markers (custom made)
Auditory cues for motor tasks NA NA Custom made audio file are played on a smart phone
Matlab R2018b software Mathworks
MotionMonitor v 8.52 Software Innovative Sports Training, Inc., Chicago, IL
Perdue Pegboard Test
Plastic cubes (0.3 cm on edge) NA NA Custom made plastic cubes with 0.3 cm on edge. These were made using 3D printer
Plastic cubes (1cm on edge) NA NA Custom made plastic cubes with 1 cm on edge. These were made using 3D printer
Template print NA NA Custom made templates of the motor tasks, including home position, outlines of target positions.
Vicon 512 Motion-analysis System and Work station v5.2 software OMG plc, Oxford, UK

References

  1. Spinazzola, L. Impairments of trunk movements following left or right hemisphere lesions: dissociation between apraxic errors and postural instability. Brain. 126 (12), 2656-2666 (2003).
  2. Michaelsen, S. M., Jacobs, S., Roby-Brami, A., Levin, M. F. Compensation for distal impairments of grasping in adults with hemiparesis. Experimental Brain Research. 157 (2), 162-173 (2004).
  3. Saposnik, G., Levin, M. SORCan SORC. Virtual Reality in Stroke Rehabilitation A Meta-Analysis and Implications for Clinicians. Stroke. 42 (5), 1380-1386 (2011).
  4. Levin, M. F., Snir, O., Liebermann, D. G., Weingarden, H., Weiss, P. L. Virtual Reality Versus Conventional Treatment of Reaching Ability in Chronic Stroke: Clinical Feasibility Study. Neurology and Therapy. 1 (1), 3 (2012).
  5. Knaut, L. A., Subramanian, S. K., McFadyen, B. J., Bourbonnais, D., Levin, M. F. Kinematics of pointing movements made in a virtual versus a physical 3-dimensional environment in healthy and stroke subjects. Archives of Physical Medicine and Rehabilitation. 90 (5), 793-802 (2009).
  6. Mastos, M., Miller, K., Eliasson, A. C., Imms, C., Mastos, M., Eliasson, A. C., Imms, C. M. K., Mastos Miller, K., Eliasson, A. C., Imms, C. M. Goal-directed training: linking theories of treatment to clinical practice for improved functional activities in daily life. Clinical Rehabilitation. 21 (1), 47-55 (2007).
  7. Harris, C. M., Wolpert, D. M. Signal-dependent noise determines motor planning. Nature. 394, 780-784 (1998).
  8. Gentilucci, M. Object motor representation and reaching-grasping control. Neuropsychologia. 40 (8), 1139-1153 (2002).
  9. Subramanian, S. K., Yamanaka, J., Chilingaryan, G., Levin, M. F. Validity of Movement Pattern Kinematics as Measures of Arm Motor Impairment Poststroke. Stroke. 41 (10), 2303-2308 (2010).
  10. Strenge, H., Niederberger, U., Seelhorst, U. Correlation between Tests of Attention and Performance on Grooved and Purdue Pegboards in Normal Subjects. Perceptual and Motor Skills. 95 (2), 507-514 (2002).
  11. Lin, J. -. H., Hsu, M. -. J., Sheu, C. -. F., et al. Psychometric comparisons of 4 measures for assessing upper-extremity function in people with stroke. Physical Therapy. 89 (8), 840-850 (2009).
  12. See, J., Dodakian, L., Chou, C., et al. A standardized approach to the fugl-meyer assessment and its implications for clinical trials. Neurorehabilitation and Neural Repair. 27 (8), 732-741 (2013).
  13. Murphy, M. A., Willén, C., Sunnerhagen, K. S. Kinematic Variables Quantifying Upper-Extremity Performance After Stroke During Reaching and Drinking From a Glass. Neurorehabilitation and Neural Repair. 25 (1), 71-80 (2011).
  14. Michaelsen, S. M., Jacobs, S., Roby-Brami, A., Levin, M. F. Compensation for distal impairments of grasping in adults with hemiparesis. Experimental Brain Research. 157, 162-173 (2004).
  15. Järveläinen, J., Schürmann, M., Hari, R., Jarvelainen, J., Schurmann, M., Hari, R. Activation of the human primary motor cortex during observation of tool use. Neuroimage. 23 (1), 187-192 (2004).
  16. Imazu, S., Sugio, T., Tanaka, S., Inui, T. Differences between actual and imagined usage of chopsticks: An fMRI study. Cortex. 43 (3), 301-307 (2007).
  17. Ishii, R., Schulz, M., Xjang, J., et al. MEG study of lang-term cortical reoganization of senorimotor areas with respect to using chopsticks. Neuroreport. 13 (16), 2155-2159 (2002).
  18. Chen, H. M., Chang, J. J. The skill components of a therapeutic chopsticks task and their relationship with hand function tests. Kaohsiung Journal of Medical Sciences. 15 (12), 704-709 (1999).
  19. Shin, S., Demura, S., Aoki, H. Effects of prior use of chopsticks on two different types of dexterity tests: Moving Beans Test and Purdue Pegboard. Perceptual and Motor Skills. 108 (2), 392-398 (2009).
  20. Ma, H. -. i., Trombly, C. A., Robinson-Podolski, C. The Effect of Context on Skill Acquisition and Transfer. American Journal of Occupational Therapy. 53 (2), 138-144 (1999).
  21. Rosenbaum, D. A., Engelbrecht, S. E., Bushe, M. M., Loukopoulos, L. D. Knowledge Model for Selecting and Producing Reaching Movements. Journal of Motor Behavior. 25 (3), 217-227 (1993).

Play Video

Cite This Article
Girnis, J., Agag, T., Nobiling, T., Sweet, V., Kim, B. The Impact of Motor Task Conditions on Goal-Directed Arm Reaching Kinematics and Trunk Compensation in Chronic Stroke Survivors. J. Vis. Exp. (171), e61940, doi:10.3791/61940 (2021).

View Video