Котрансляционная вставка в предварительно сформированные нанодиски позволяет изучать бесклеточные синтезированные мембранные белки в определенных липидных средах без контакта с моющими средствами. Этот протокол описывает подготовку основных компонентов системы и критических параметров для повышения эффективности экспрессии и качества выборки.
Бесклеточные экспрессионные системы позволяют адаптировать реакционные среды для поддержки функционального сворачивания даже сложных белков, таких как мембранные белки. Показаны экспериментальные процедуры котрансляционной вставки и сворачивания мембранных белков в преформированные и определенные мембраны, поставляемые в виде нанодисков. Протокол полностью не содержит моющих средств и может генерировать миллиграммы очищенных образцов в течение одного дня. Полученные образцы мембранного белка / нанодисков могут быть использованы для различных функциональных исследований и структурных применений, таких как кристаллизация, ядерный магнитный резонанс или электронная микроскопия. Описано получение основных ключевых компонентов, таких как бесклеточные лизаты, нанодиски с конструированными мембранами, критические стоковые растворы, а также сборка двухкамерных бесклеточных реакций экспрессии. Поскольку требования к сворачиванию мембранных белков могут быть весьма разнообразными, основным направлением этого протокола является модуляция параметров и стадий реакции, важных для качества образца, таких как критические основные реакционные соединения, мембранный состав нанодисков, окислительно-восстановительная и шаперонная среда или дизайн шаблона ДНК. Весь процесс демонстрируется синтезом протеорходопсина и рецептора, связанного с G-белком.
Мембранные белки (МП) являются сложными мишенями в исследованиях производства белка из-за их нерастворимости в водных средах. Традиционные платформы производства МП включают клеточные системы, такие как E. coli, дрожжи или эукариотические клетки. Синтезированные рекомбинантные МП либо извлекаются из клеточных мембран, либо переворачиваются из тел включения1. После солюбилизации моющих средств МП могут быть переведены в подходящие мембранные среды с помощью установленных протоколов восстановления in vitro. Помимо везикул и липосом, восстановление MP в плоские мембраны в виде частиц нанодисков2 или salipro3 стало обычным методом в последнее время. Однако все эти стратегии подразумевают контакт детергентов с депутатами, что может привести к дестабилизации, диссоциации олигомеров и даже потере структуры и активности белка4. Поэтому скрининг на оптимальные условия солюбилизации и восстановления моющих средств может быть утомительным и трудоемким5.
Открытая природа бесклеточных (CF) систем позволяет напрямую снабжать реакцию экспрессии предварительно сформированными мембранами с определенным липидным составом. В этом липидном режиме экспрессии (L-CF) синтезированные МП имеют возможность совместного трансляционного введения в предоставленные бислои 6,7 (рисунок 1). Нанодиски, состоящие из мембранного каркасного белка (MSP), окружающего плоский липидный двухслойный диск8, по-видимому, особенно подходят для этой стратегии 9,10. Нанодиски могут быть обычно собраны in vitro с различными липидами, они очень стабильны, а запасы могут быть сконцентрированы до 1 мМ. Однако экспрессия МПП в кишечной палочке и ее очистка необходимы. В качестве альтернативной стратегии MSP может быть совместно экспрессирован вместе с целевым MP в реакциях CF, поставляемых липосомами 11,12,13. Шаблоны ДНК как для MSP, так и для MP добавляются в реакцию, и MP / нанодиски могут формироваться при экспрессии. В то время как производство МПП избегается, стратегия совместной экспрессии требует тщательной тонкой настройки конечных концентраций шаблона ДНК, и можно ожидать более высоких вариаций эффективности производства образцов.
Котрансляционная вставка МП в мембраны преформированных нанодисков является нефизиологическим и до сих пор в значительной степени неизвестным механизмом, независимым от транслоконных механизмов и сигнальных последовательностей 13,14,15,16. Основными детерминантами эффективности введения являются тип мембранного белка, а также липидный состав предоставленной мембраны, с частым предпочтением отрицательно заряженных липидов15,17. Поскольку мембраны нанодисков относительно ограничены по размеру, значительное количество липидов высвобождается при вставкеMP 18. Изменение размера нанодисков позволяет вставлять и настраивать более высокие олигомерные МП комплексы 15,18. Среди прочего показана правильная сборка гомолигомерных комплексов для ионного канала KcsA, для ионного насоса протеорходопсина (PR) и для мультилекарственного транспортера EmrE15,18. Депутаты, скорее всего, войдут в симметричную нанодисковую мембрану с обеих сторон на относительно равной частоте. Поэтому следует учитывать, что различные мономеры или олигомеры, вставленные в один нанодиск, могут иметь противоположные ориентации. Однако смещение в ориентации может быть вызвано механизмами совместной вставки, о которых сообщалось для образования гексамеров PR и тетрамеров KcsA18. Дальнейшее смещение в ориентации MP может быть результатом переключения ориентации вставленных депутатов, вероятно, на краю мембран нанодисков.
Производство лизатов CF из штаммов E. coli является надежным рутинным методом и может быть выполнено практически в любой биохимической лаборатории 19,20. Следует учитывать, что помимо образования дисульфидных мостов, большинство других посттрансляционных модификаций отсутствуют, если МП синтезируется с использованием лизатов E. coli. Хотя это может привести к образованию более однородных образцов для структурных исследований, может потребоваться исключить потенциальное воздействие на функцию отдельных мишеней МП. Однако эффективное производство высококачественных образцов рецепторов, связанных с G-белком (GPCR)14,21,22, эукариотических транспортеров 23 или крупных гетеромерных сборок24 в лизатах E. coli CF, указывает на их пригодность даже для сложных мишеней. Объемы в подготовительной шкале (≈ 1 мг/мл) образца могут быть получены с двухкамерной конфигурацией без ячеек непрерывного обмена (CECF), состоящей из реакционной смеси (RM) и отсека питательной смеси (FM). Объем FM превышает объем RM в 15-20 раз и обеспечивает резервуар низкомолекулярных энергетических соединений и прекурсоров19. Таким образом, реакция экспрессии растягивается на несколько часов, а конечный выход мишени MP увеличивается. Отсеки RM и FM разделены диализной мембраной с отсечкой 10-14 кДа. Эти два отсека требуют специальной конструкции реакционного контейнера CECF (рисунок 1). Коммерческие диализные кассеты в качестве контейнеров RM в сочетании с индивидуальными контейнерами из плексигласа, содержащими FM, являются подходящими примерами. Доходностью MP можно дополнительно манипулировать, изменяя соотношение RM:FM или обменивая FM после определенного периода инкубации.
Выход и качество МП часто требуют интенсивной оптимизации параметров реакции. Важным преимуществом выражения CF является возможность модификации и тонкой настройки практически любого соединения в соответствии с индивидуальными требованиями MP. Простая стратегия заключается в том, чтобы сначала сосредоточиться на повышении производительности MP путем создания базового производственного протокола, а затем оптимизировать качество MP путем тонкой настройки реакции и условий складывания. Отсутствие физиологических процессов в лизатах муковисцидоза и снижение их сложности приводят к высоким показателям успешности эффективного производства MPs25. Рутинные соображения по проектированию шаблона ДНК и оптимизации концентрации ионов Mg2+ в большинстве случаев достаточны для получения удовлетворительных выходов26. В зависимости от режима экспрессии, оптимизация качества MP может занять много времени, так как большее разнообразие параметров необходимо экранировать 14,17,22.
Для создания описанной платформы экспрессии CF необходимы протоколы для производства лизата CF (i), РНК-полимеразы T7 (ii), нанодисков (iii) и основных реакционных соединений CECF (iv) (рисунок 1). Производные штамма E. coli K12 A1927 или BL21 часто используются для получения эффективных лизатов S30 (центрифугирование при 30 000 х г). Помимо лизатов S30, могут использоваться соответствующие лизаты, центрифугированные при других g-силах (например, S12). Лизаты различаются по эффективности экспрессии и сложности протеома. Протеом лизата S30, полученный по описанному протоколу, был детально изучен28. Протеом S30 по-прежнему содержит некоторые остаточные белки наружной мембраны, которые могут создать фоновые проблемы при экспрессии и анализе ионных каналов. Для таких целей рекомендуется использование лизатов S80-S100. Ценной модификацией во время приготовления лизата является индукция реакции SOS комбинированным тепловым шоком и подачей этанола в средней фазе роста клеток. Полученные лизаты HS30 обогащены шаперонами и могут быть использованы в смесях с лизатами S30 для улучшения складывания MP22. Экспрессия CF в лизатах E. coli управляется как связанный процесс транскрипции/трансляции с шаблонами ДНК, содержащими промоторы, контролируемые РНК-полимеразой T7 (T7RNAP). Фермент может быть эффективно продуцирован в звездных клетках BL21(DE3), несущих плазмиду pAR121929.
Две копии MSP1E3D1 собираются в один нанодиск диаметром 10-12 нм, но протокол, описанный ниже, может работать и для других производных MSP. Тем не менее, нанодиски, большие, чем те, которые сформированы с помощью MSP1E3D1, как правило, менее стабильны, в то время как меньшие нанодиски, сформированные с производными MSP, такими как MSP1, могут не вмещать более крупные MPS или MP-комплексы. Нанодиски MSP1E3D1 могут быть собраны in vitro с большим разнообразием различных липидов или липидных смесей. Предварительно сформированные нанодиски обычно стабильны в течение > 1 года при -80 °C, в то время как стабильность может варьироваться для различных липидных компонентов. Для скрининга липидного воздействия на складчатость и стабильность МП необходимо подготовить комплексный набор нанодисков, собранных с репрезентативным разнообразием липидно-липидных смесей. Следующие липиды могут дать хороший стартовый выбор: 1,2-димиристоил-sn-глицеро-3-фосфо-(1′-рак-глицерин) (DMPG), 1,2-димиристоил-sn-глицеро-3-фосфохолин (DMPC), 1,2 диолеоил-sn-глицеро-3-фосфо-рак-(1-глицерин) (DOPG), 1,2-диолеоил-sn-глицерон-3-фосфохолин (DOPC), 1-пальмитоил-2-олеоил-sn-глицеро-3-фосфо-(1′-рак-глицерол) (POPG) и 1-пальмитоил-2-олеоил-глицеро-3-фосфохолин (POPC).
Описан протокол приготовления реакции 3 мл CECF. Возможно дальнейшее масштабирование вверх или вниз в соотношении 1:1. Для конфигурации CECF с двумя отсеками необходимо подготовить RM, содержащий все соединения, и FM, содержащий только низкомолекулярные соединения. Коммерческие диализные устройства 3 мл с MWCO 10-14 кДа могут использоваться в качестве контейнеров RM, которые затем помещаются в изготовленные на заказ контейнеры из плексигласа, содержащие FM (рисунок 1D)30. Соотношение RM:FM составляет 1:20, поэтому 60 мл FM должны быть подготовлены для 3 мл RM. Качество, концентрация или тип нескольких компонентов могут иметь решающее значение для конечного выхода и/или качества синтезированного MP (таблица 1). Шаблоны ДНК должны быть подготовлены в соответствии с опубликованными руководящими принципами, и кодонная оптимизация рамки считывания мишени может дополнительно значительно улучшить выход продукта26. Для реакции препаративного масштаба CECF описан установленный протокол получения PR. Для создания протоколов экспрессии для новых депутатов обычно необходимо выполнить оптимизационные экраны определенных соединений (табл. 1) для повышения урожайности и качества. Для ионов Mg2+ существует хорошо сфокусированный оптимум концентрации, который часто показывает значительные различия для различных шаблонов ДНК. Другие реакционные соединения CF, такие как новые партии лизатов T7RNAP или S30, могут дополнительно сместить оптимальную концентрацию Mg2+ . В качестве примера описан типичный экран Mg2+ в диапазоне концентраций 14-24 мМ и с шагом 2 мМ. Каждая концентрация просеивается в дубликатах и в аналитической шкале реакций CECF. В качестве реакционного контейнера CECF используются изготовленные на заказ контейнеры Mini-CECF из оргстекла30 , содержащие RM, в сочетании со стандартными 24-луночными микропластинками, содержащими FM (рисунок 1B). Альтернативно, могут использоваться коммерческие диализные картриджи в сочетании с 96-глубинными микропластинами скважин или другими коммерческими диализаторными устройствами в соответствующих установках (фиг.1С).
Описана установка и стратегии оптимизации экспрессии CF и котрансляционной вставки функциональных МП в нанодиски. Требуемое оборудование включает в себя биореактор, френч-прессовое устройство или аналогичное, УФ/ВИС и флуоресцентный считыватель, реакционные сосуды CF, подходящие для д…
The authors have nothing to disclose.
Мы хотели бы поблагодарить грант Deutsche Forschungsgemeinschaft (DFG) BE1911/8-1, проект LOEWE GLUE и совместный исследовательский центр Transport and Communication across Membranes (SFB807) за финансовую поддержку.
1,2-dimyristoyl-sn-glycero-3-phospho-(1'-rac-glycerol) (sodium salt) (DMPG) | Avanti Polar Lipids (USA) | 840445P | |
1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC) | Avanti Polar Lipids (USA) | 850345C | |
1,2-dioleoyl-sn-glycero-3-phosphocholine (sodium salt) (DOPC) | Avanti Polar Lipids (USA) | 850375C | |
1,2 dioleoyl-sn-glycero-3-phospho-rac-(1-glycerol) (sodium salt) (DOPG) | Avanti Polar Lipids (USA) | 840475C | |
1-palmitoyl-2-oleoyl-glycero-3-phosphocholine (POPC) | Avanti Polar Lipids (USA) | 850457C | |
1-palmitoyl-2-oleoyl-sn-glycero-3-phospho-(1'-rac-glycerol) (sodium salt) (POPG) | Avanti Polar Lipids (USA) | 840034C | |
2-Amino-2-(hydroxymethyl)-propan-1,3-diol (Tris) | Carl Roth (Germany) | 4855 | |
2-Mercaptoethanol | Carl Roth (Germany) | 4227 | |
2-Propanol | Carl Roth (Germany) | 9781 | |
[3H]-dihydroalprenolol Hydrochloride | American Radiolabeled Chemicals (USA) | ART0134 | |
Acetyl phosphate lithium potassium salt (ACP) | Merck (Germany) | 1409 | |
Adenosine 5’-triphosphate (ATP) | Sigma Aldrich (Germany) | A9251 | |
Alprenolol hydrochloride | Merck (Germany) | A0360000 | |
Anion exchange chromatography column material: Q-sepharose® | Sigma-Aldrich (Germany) | Q1126 | |
Autoclave Type GE 446EC-1 | Gettinge (Germany) | ||
Bioreactor Type 884 124/1 | B.Braun (Germany) | ||
Centrifuge | Sorvall RC12BP+; Thermo Scientific (Germany); Sorvall RC-5C; Thermo Scientific (Germany); Mikro 22 R; Hettich (Germany) | ||
Cholic acid | Carl Roth (Germany) | 8137 | |
Coomassie Brilliant Blue R250 | Carl Roth (Germany) | 3862 | |
Culture flasks 500 ml baffled flasks, 2 l baffled flasks | Schott Duran (Germany) | ||
Cytidine 5'-triphosphate disodium salt | Sigma-Aldrich (Germany) | C1506 | |
D-glucose monohydrate | Carl Roth (Germany) | 6780 | |
Di-potassiumhydrogen phosphate trihydrate | Carl Roth (Germany) | 6878 | |
Dialysis tubing SpectrumTM Labs Spectra/PorTM 12-14 kD MWCO Standard RC tubing | Fisher Scientific (Germany) | 8700152 | |
Dithiothreit | Carl Roth (Germany) | 6908 | |
Ethanol | Carl Roth (Germany) | K928 | |
Folinic acid calcium salt hydrate | Sigma-Aldrich (Germany) | 47612 | |
French pressure cell disruptor | SLM; Amico Instruments (USA) | ||
Glycerol | Carl Roth (Germany) | 3783 | |
Guanosine 5'-triphosphate di-sodium salt (GTP) | Sigma-Aldrich (Germany) | G8877 | |
Hydrochloric Acid | Carl Roth (Germany) | K025 | |
IMAC column: HiTrap IMAC HP 5 mL | GE Life Sciences (Germany) | GE17-5248 | |
Imidazole | Carl Roth (Germany) | 3899 | |
Isopropyl-β-D-thiogalactopyranosid (IPTG) | Carl Roth (Germany) | 2316 | |
Kanamycin | Carl Roth (Germany) | T832 | |
L-Alanine | Carl Roth (Germany) | 3076.1 | |
L-Arginine | Carl Roth (Germany) | 6908 | |
L-Asparagine | Carl Roth (Germany) | HN23 | |
L-Aspartic Acid | Carl Roth (Germany) | T202 | |
L-Cysteine | Carl Roth (Germany) | T203 | |
L-Glutamic Acid | Carl Roth (Germany) | 3774 | |
L-Glutamine | Carl Roth (Germany) | 3772 | |
L-Glycine | Carl Roth (Germany) | 3187 | |
L-Histidine | Carl Roth (Germany) | 3852 | |
L-Isoleucine | Carl Roth (Germany) | 3922 | |
L-Leucine | Carl Roth (Germany) | 1699 | |
L-Lysine | Carl Roth (Germany) | 4207 | |
L-Methionine | Carl Roth (Germany) | 9359 | |
L-Proline | Carl Roth (Germany) | 1713 | |
L-Phenylalanine | Carl Roth (Germany) | 1709 | |
L-Serine | Carl Roth (Germany) | 4682 | |
L-Threonine | Carl Roth (Germany) | 1738 | |
L-Tryptophane | Carl Roth (Germany) | 7700 | |
L-Tyrosine | Carl Roth (Germany) | T207 | |
MD100 dialysis units | Scienova (Germany) | 40077 | |
N-2-Hydroxyethylpiperazine-N'-2-ethansulfonic acid (HEPES) | Carl Roth (Germany) | 6763 | |
n-dodecylphosphocholine | Antrace (USA) | F308S | |
PAGE chamber: Mini-Protean Tetra Cell | Biorad (Germany) | ||
PAGE gel casting system: Mini Protean Handcast systems | Biorad (Germany) | ||
PAGE gel power supply: Power Pac 3000 | Biorad (Germany) | ||
Tryptone/peptone from caseine | Carl Roth (Germany) | 6681 | |
Peristaltic pump: ip-12 | Ismatec (Germany) | ||
Phosphoenol pyruvate monopotassium salt | Sigma Aldrich (Germany) | 860077 | |
Potassium dihydrogen phosphate | Carl Roth (Germany) | P018 | |
Potassium acetate | Carl Roth (Germany) | 4986 | |
Potassium chloride | Carl Roth (Germany) | 6781 | |
Pyruvate Kinase | Roche (Germany) | 10109045001 | |
Scintillation counter: Hidex 300 SL | Hidex (Finland) | ||
SDS pellets | Carl Roth (Germany) | 8029 | |
Sodium azide | Sigma-Aldrich (Germany) | K305 | |
Sodium chloride | Carl Roth (Germany) | P029 | |
Spectrophotometer Nanodrop | Peqlab (Germany) | ||
Spectrophotometer/fluorescence reader Spark® | Tecan (Switzerland) | ||
tRNA (E. coli) | Roche (Germany) | 10109550001 | |
Ultra sonificator | Labsonic U, B. Braun (Germany) | ||
Uridine 5’-triphosphate tri-sodium salt (UTP) | Sigma-Aldrich (Germany) | U6625 | |
Y-30 antifoam | Sigma-Aldrich (Germany) | A6457 | |
Yeast extract | Carl Roth (Germany) | 2904 |