Summary

Determinazione della resistenza meccanica dei metalli a grana ultra fine

Published: November 22, 2021
doi:

Summary

Il protocollo qui presentato descrive gli esperimenti radiali ad alta pressione diamante-incudine-cella e analizza i relativi dati, che sono essenziali per ottenere la resistenza meccanica dei nanomateriali con una svolta significativa rispetto all’approccio tradizionale.

Abstract

Il rafforzamento meccanico dei metalli è la sfida di lunga data e l’argomento popolare della scienza dei materiali nelle industrie e nel mondo accademico. La dipendenza dalle dimensioni della forza dei nanometalli ha attirato molto interesse. Tuttavia, caratterizzare la resistenza dei materiali su scala nanometrica inferiore è stata una grande sfida perché le tecniche tradizionali diventano non più efficaci e affidabili, come la nano-indentazione, la compressione del micropilastro, la trazione, ecc. L’attuale protocollo utilizza tecniche di diffrazione a raggi X (XRD) radial diamond-anvil cell (rDAC) per tracciare i cambiamenti di stress differenziale e determinare la forza dei metalli ultrafini. Si è scoperto che le particelle di nichel ultrafini hanno una resistenza allo snervamento più significativa rispetto alle particelle più grossolane e il rafforzamento delle dimensioni del nichel continua fino a 3 nm. Questa scoperta vitale dipende immensamente da tecniche di caratterizzazione efficaci e affidabili. Si prevede che il metodo rDAC XRD svolgerà un ruolo significativo nello studio e nell’esplorazione della meccanica dei nanomateriali.

Introduction

La resistenza alla deformazione plastica determina la resistenza dei materiali. La forza dei metalli di solito aumenta con la diminuzione delle dimensioni dei grani. Questo fenomeno di rafforzamento delle dimensioni può essere ben illustrato dalla tradizionale teoria della relazione Hall-Petch dal millimetro fino al regime submicron 1,2, che si basa sul meccanismo di deformazione mediato dalla dislocazione dei metalli di grandi dimensioni, cioè le dislocazioni si accumulano ai confini del grano (GB) e ostacolano i loro movimenti, portando al rafforzamento meccanico nei metalli 3,4.

Al contrario, l’ammorbidimento meccanico, spesso indicato come la relazione inversa Hall-Petch, è stato riportato per nanometalli fini negli ultimi due decenni 5,6,7,8,9,10. Pertanto, la forza dei nanometalli è ancora sconcertante poiché è stato rilevato un indurimento continuo per granulometrie fino a ~ 10 nm11,12, mentre i casi di ammorbidimento delle dimensioni al di sotto del regime di 10 nm sono stati segnalati anche 7,8,9,10. La principale difficoltà o sfida per questo argomento dibattuto è quella di effettuare misurazioni statisticamente riproducibili sulle proprietà meccaniche dei nanometalli ultrafini e stabilire una correlazione affidabile tra la resistenza e la granulometria dei nanometalli. Un’altra parte della difficoltà deriva dall’ambiguità nei meccanismi di deformazione plastica dei nanometalli. Sono stati segnalati vari difetti o processi su scala nanometrica, tra cui lussazioni13,14, gemellaggio di deformazione 15,16,17, errori di impilamento15,18, migrazione GB19, GB scorrevoli 5,6,20,21, rotazione del grano 22,23,24, parametri del legameatomico 25,26,27,28, ecc. Tuttavia, quale domina la deformazione plastica e quindi determina la forza dei nanometalli non è ancora chiaro.

Per questi problemi di cui sopra, gli approcci tradizionali di esame della resistenza meccanica, come la prova di trazione29, la prova di durezza Vickers30,31, la prova di nano-indentazione32, la compressione del micropilare 33,34,35, ecc. sono meno efficaci perché l’alta qualità di grandi pezzi di materiali nanostrutturati è così difficile da fabbricare e il penetratore convenzionale è molto più grande della singola nanoparticella di materiali (per il meccanica a particella singola). In questo studio, introduciamo le tecniche radiali DAC XRD 36,37,38 alla scienza dei materiali per tracciare in situ lo stress di snervamento e la testurizzazione della deformazione del nano nichel di varie granulometrie, che vengono utilizzati nel campo delle geoscienze in studi precedenti. È stato scoperto che il rafforzamento meccanico può essere esteso fino a 3 nm, molto più piccolo delle dimensioni più sostanziali precedentemente riportate di nanometalli, il che amplia il regime della relazione convenzionale Hall-Petch, implicando il significato delle tecniche RDAC XRD per la scienza dei materiali.

Protocol

1. Preparazione del campione Ottenere polvere di nichel da 3 nm, 20 nm, 40 nm, 70 nm, 100 nm, 200 nm e 500 nm da fonti commerciali (vedere Tabella dei materiali). La caratterizzazione morfologica è mostrata in Figura 1. Preparare particelle di nichel da 8 nm riscaldando particelle di nichel da 3 nm utilizzando un bollitore di reazione (vedere Tabella dei materiali). Mettere ~ 20 ml di etanolo assoluto e ~ 50 mg d…

Representative Results

Sotto compressione idrostatica, le linee di diffrazione a raggi X srotolate devono essere diritte, non curve. Tuttavia, sotto pressione non idrostatica, la curvatura (ellitticità degli anelli XRD, che si traduce nella non linearità delle linee tracciate lungo l’angolo azimutale) aumenta significativamente il nichel a grana ultrafine a pressioni simili (Figura 4). A una pressione simile, la deformazione differenziale del nichel di 3 nm è la più alta. I risultati della resistenza meccanica…

Discussion

Le simulazioni computazionali sono state ampiamente utilizzate per studiare l’effetto granulometrico sulla forza dei nanometalli 5,6,16,17,27,42. Dislocazioni perfette, lussazioni parziali e deformazione GB sono state proposte per svolgere un ruolo decisivo nei meccanismi di deformazione dei nanomateriali. In una simulazione …

Disclosures

The authors have nothing to disclose.

Acknowledgements

Riconosciamo il sostegno della National Natural Science Foundation of China (NSFC) con i numeri di sovvenzione 11621062, 11772294, U1530402 e 11811530001. Questa ricerca è stata anche parzialmente supportata dalla China Postdoctoral Science Foundation (2021M690044). Questa ricerca ha utilizzato le risorse dell’Advanced Light Source, che è un DOE Office of Science User Facility con il numero di contratto DE-AC02-05CH11231 e lo Shanghai Synchrotron Radiation Facility. Questa ricerca è stata parzialmente sostenuta da COMPRES, il Consorzio per la ricerca sulle proprietà dei materiali nelle scienze della Terra nell’ambito dell’accordo di cooperazione NSF EAR 1606856.

Materials

20 nm Ni Nanomaterialstore SN1601 Flammable
3 nm Ni nanoComposix Flammable
40, 70, 100, 200, 500 nm Ni US nano US1120 Flammable
Absolute ethanol as the solution to make 8 nm Ni
Absolute isopropanol as the solution to make 12 nm Ni
Amorphous boron powder alfa asear
Copper mesh Beijing Zhongjingkeyi Technology Co., Ltd. TEM grid
Epoxy glue
Ethanol clean experimental setup
Focused ion beam FEI
Glass slide
Glue tape Scotch
Kapton DuPont Polyimide film material
Laser drilling machine located in high pressure lab of ALS
Monochromatic synchrotron X-ray Beamline 12.2.2, Advanced Light Source (ALS), Lawrence Berkeley National Laboratory X-ray energy: 25-30 keV
Optical microscope Leica to mount the gasket and load samples
Pt powder thermofisher 38374
Reaction kettle Xian Yichuang Co.,Ltd. 50 mL
Sand paper from 400 mesh to 1000 mesh
Transmission Electron Microscopy FEI Titan G2 60-300
Two-dimension image plate ALS, BL 12.2.2 mar 345

References

  1. Hall, E. O. The Deformation and ageing of mild steel.3. Discussion of results. Proceedings of the Physical Society of London Section B. 64 (381), 747-753 (1951).
  2. Conrad, H. Effect of grain size on the lower yield and flow stress of iron and steel. Acta Metallurgica. 11 (1), 75-77 (1963).
  3. Kanninen, M. F., Rosenfield, A. R. Dynamics of dislocation pile-up formation. The Philosophical Magazine: A Journal of Theoretical Experimental and Applied Physics. 20 (165), 569-587 (1969).
  4. Thompson, A. A. W. Yielding in nickel as a function of grain or cell size. Acta Metallurgica. 23 (11), 1337-1342 (1975).
  5. Schiotz, J., Di Tolla, F. D., Jacobsen, K. W. Softening of nanocrystalline metals at very small grain sizes. Nature. 391 (6667), 561-563 (1998).
  6. Schiotz, J., Jacobsen, K. W. A maximum in the strength of nanocrystalline copper. Science. 301 (5638), 1357-1359 (2003).
  7. Conrad, H., Narayan, J. Mechanism for grain size softening in nanocrystalline Zn. Applied Physics Letters. 81 (12), 2241-2243 (2002).
  8. Chokshi, A. H., Rosen, A., Karch, J., Gleiter, H. On the validity of the hall-petch relationship in nanocrystalline materials. Scripta Metallurgica. 23 (10), 1679-1683 (1989).
  9. Sanders, P. G., Eastman, J. A., Weertman, J. R. Elastic and tensile behavior of nanocrystalline copper and palladium. Acta Materialia. 45 (10), 4019-4025 (1997).
  10. Conrad, H., Narayan, J. On the grain size softening in nanocrystalline materials. Scripta Materialia. 42 (11), 1025-1030 (2000).
  11. Chen, J., Lu, L., Lu, K. Hardness and strain rate sensitivity of nanocrystalline Cu. Scripta Materialia. 54 (11), 1913-1918 (2006).
  12. Knapp, J. A., Follstaedt, D. M. Hall-Petch relationship in pulsed-laser deposited nickel films. Journal of Materials Research. 19 (1), 218-227 (2004).
  13. Kumar, K. S., Suresh, S., Chisholm, M. F., Horton, J. A., Wang, P. Deformation of electrodeposited nanocrystalline nickel. Acta Materialia. 51 (2), 387-405 (2003).
  14. Chen, B., et al. Texture of Nanocrystalline Nickel: Probing the lower size limit of dislocation activity. Science. 338 (6113), 1448-1451 (2012).
  15. Chen, M. W., et al. Deformation twinning in nanocrystalline aluminum. Science. 300 (5623), 1275-1277 (2003).
  16. Yamakov, V., Wolf, D., Phillpot, S. R., Gleiter, H. Deformation twinning in nanocrystalline Al by molecular-dynamics simulation. Acta Materialia. 50 (20), 5005-5020 (2002).
  17. Yamakov, V., Wolf, D., Phillpot, S. R., Mukherjee, A. K., Gleiter, H. Dislocation processes in the deformation of nanocrystalline aluminium by molecular-dynamics simulation. Nature Materials. 1 (1), 45-49 (2002).
  18. Yamakov, V., Wolf, D., Salazar, M., Phillpot, S. R., Gleiter, H. Length-scale effects in the nucleation of extended dislocations in nanocrystalline Al by molecular-dynamics simulation. Acta Materialia. 49 (14), 2713-2722 (2001).
  19. Shan, Z. W., et al. Grain boundary-mediated plasticity in nanocrystalline nickel. Science. 305 (5684), 654-657 (2004).
  20. Li, H., et al. Strain-Dependent Deformation Behavior in Nanocrystalline Metals. Physical Review Letters. 101 (1), 015502 (2008).
  21. Van Swygenhoven, H., Derlet, P. M. Grain-boundary sliding in nanocrystalline fcc metals. Physical Review B. 64 (22), 224105 (2001).
  22. Ovid’ko, I. A. Deformation of nanostructures. Science. 295 (5564), 2386 (2002).
  23. Murayama, M., Howe, J. M., Hidaka, H., Takaki, S. Atomic-level observation of disclination dipoles in mechanically milled, nanocrystalline Fe. Science. 295 (5564), 2433 (2002).
  24. Wang, L., et al. Grain rotation mediated by grain boundary dislocations in nanocrystalline platinum. Nature Communications. 5, 4402 (2014).
  25. Edalati, K., et al. Influence of dislocation-solute atom interactions and stacking fault energy on grain size of single-phase alloys after severe plastic deformation using high-pressure torsion. Acta Materialia. 69, 68-77 (2014).
  26. Edalati, K., Horita, Z. High-pressure torsion of pure metals: Influence of atomic bond parameters and stacking fault energy on grain size and correlation with hardness. Acta Materialia. 59 (17), 6831-6836 (2011).
  27. Yamakov, V., Wolf, D., Phillpot, S. R., Mukherjee, A. K., Gleiter, H. Deformation-mechanism map for nanocrystalline metals by molecular-dynamics simulation. Nature Materials. 3 (1), 43-47 (2004).
  28. Starink, M. J., Cheng, X., Yang, S. Hardening of pure metals by high-pressure torsion: A physically based model employing volume-averaged defect evolutions. Acta Materialia. 61 (1), 183-192 (2013).
  29. Yang, T., et al. Ultrahigh-strength and ductile superlattice alloys with nanoscale disordered interfaces. Science. 369 (6502), 427 (2020).
  30. Hu, J., Shi, Y. N., Sauvage, X., Sha, G., Lu, K. Grain boundary stability governs hardening and softening in extremely fine nanograined metals. Science. 355 (6331), 1292 (2017).
  31. Yue, Y., et al. Hierarchically structured diamond composite with exceptional toughness. Nature. 582 (7812), 370-374 (2020).
  32. Li, X. Y., Jin, Z. H., Zhou, X., Lu, K. Constrained minimal-interface structures in polycrystalline copper with extremely fine grains. Science. 370 (6518), 831 (2020).
  33. Yan, S., et al. Crystal plasticity in fusion zone of a hybrid laser welded Al alloys joint: From nanoscale to macroscale. Materials and Design. 160, 313-324 (2018).
  34. Khalajhedayati, A., Pan, Z., Rupert, T. J. Manipulating the interfacial structure of nanomaterials to achieve a unique combination of strength and ductility. Nature Communications. 7 (1), 10802 (2016).
  35. Chen, L. Y., et al. Processing and properties of magnesium containing a dense uniform dispersion of nanoparticles. Nature. 528 (7583), 539-543 (2015).
  36. Zhou, X., et al. High-pressure strengthening in ultrafine-grained metals. Nature. 579 (7797), 67-72 (2020).
  37. Lutterotti, L., Vasin, R., Wenk, H. -. R. Rietveld texture analysis from synchrotron diffraction images. I. Calibration and basic analysis. Powder Diffraction. 29 (1), 76-84 (2014).
  38. Singh, A. K., Balasingh, C., Mao, H. K., Hemley, R. J., Shu, J. F. Analysis of lattice strains measured under nonhydrostatic pressure. Journal of Applied Physics. 83 (12), 7567-7575 (1998).
  39. Hemley, R. J., et al. X-ray imaging of stress and strain of diamond, iron, and tungsten at megabar pressures. Science. 276 (5316), 1242-1245 (1997).
  40. Merkel, S., et al. Deformation of polycrystalline MgO at pressures of the lower mantle. Journal of Geophysical Research-Solid Earth. 107, 2271 (2002).
  41. Singh, A. K. The lattice strains in a specimen (cubic system) compressed nonhydrostatically in an opposed Anvil device. Journal of Applied Physics. 73 (9), 4278-4286 (1993).
  42. Van Swygenhoven, H., Derlet, P. M., Frøseth, A. G. Stacking fault energies and slip in nanocrystalline metals. Nature Materials. 3 (6), 399-403 (2004).
  43. Chung, H. Y., et al. Synthesis of ultra-incompressible superhard rhenium diboride at ambient pressure. Science. 316 (5823), 436-439 (2007).
  44. Jo, M., et al. Theory for plasticity of face-centered cubic metals. Proceedings of the National Academy of Sciences. 111 (18), 6560 (2014).
  45. Klueh, R. L. Miniature tensile test specimens for fusion reactor irradiation studies. Nuclear Engineering and Design, Fusion. 2 (3), 407-416 (1985).
  46. Konopík, P., Farahnak, P., Rund, M., Džugan, J., Rzepa, S. Applicability of miniature tensile test in the automotive sector. IOP Conference Series: Materials Science and Engineering. 461, 012043 (2018).
  47. Yang, J., et al. Strength enhancement of nanocrystalline tungsten under high pressure. Matter and Radiation at Extremes. 5 (5), 058401 (2020).
  48. Chen, B. Exploring nanomechanics with high-pressure techniques. Matter and Radiation at Extremes. 5 (6), (2020).

Play Video

Cite This Article
Xu, J., Wang, Y., Yan, J., Chen, B. Determining the Mechanical Strength of Ultra-Fine-Grained Metals. J. Vis. Exp. (177), e61819, doi:10.3791/61819 (2021).

View Video