Descrevemos um método modificado à base de ágar projetado para quantificar os efeitos antifúngicos de produtos derivados de plantas. Tanto contribuições voláteis quanto não voláteis para a atividade antifúngica podem ser avaliadas através deste protocolo. Além disso, a eficácia contra fungos pode ser medida em estágios-chave de desenvolvimento em uma única configuração experimental.
O protocolo descrito baseia-se em uma técnica de transferência de plug-plug que permite a determinação precisa das quantidades de microrganismos e seus estágios de desenvolvimento. Um número especificado de esporos estão espalhados em uma placa de ágar. Esta placa de ágar é incubada por um período definido para permitir que os fungos atinjam o estágio de desenvolvimento esperado, exceto para esporos onde a incubação não é necessária. Os plugues ágar cobertos por esporos, hifas ou micélio são retirados e transferidos para a mídia ágar contendo o composto antifúngico a ser testado a uma distância dos fungos ou em contato. Este método é aplicável para testar tanto extratos líquidos quanto amostras sólidas (pós). É particularmente adequado para quantificar as contribuições relativas de agentes voláteis e não voláteis em misturas bioativas e para determinar seus efeitos, especificamente sobre esporos, higiais precoces e micélio.
O método é altamente relevante para a caracterização da atividade antifúngica de produtos de biocontrole, notadamente produtos derivados de plantas. De fato, para o tratamento da estação, os resultados podem ser usados para orientar a escolha do modo de aplicação e estabelecer os limiares de gatilho.
As perdas globais de frutas e hortaliças podem atingir até 50% da produção1 e resultar principalmente da decadência alimentar causada pela deterioração de fungos no campo ou durante o armazenamento pós-colheita2,3, apesar do amplo emprego de fungicidas sintéticas desde meados do séculoXX 4. O uso dessas substâncias está sendo reconsiderado, pois representa sérios riscos ambientais e à saúde. Como as consequências nocivas de seu uso estão aparecendo em todos os ecossistemas e evidências de potenciais impactos à saúde acumularam5,6, novas alternativas às velhas estratégias profiláticas estão sendo desenvolvidas para tratamentos pré e pós-colheita7,8,9. Por isso, o desafio que enfrentamos é duplo. Novas estratégias fungicidas devem, em primeiro lugar, manter os níveis de eficácia da proteção alimentar contra fitopatógenos e, em segundo lugar, contribuir para reduzir drasticamente a pegada ambiental das práticas agrícolas. Para cumprir esse objetivo ambicioso, estratégias inspiradas nas defesas naturais evoluídas nas plantas estão sendo propostas, pois mais de 1000 espécies de plantas foram destacadas por suas propriedades antimicrobianas8. Por exemplo, plantas que desenvolveram fungicidas naturais para combater fitopatógenos são um novo recurso na exploração do desenvolvimento de novos produtos de biocontrole2. Óleos essenciais são moléculas emblemáticas desse tipo. Por exemplo, o óleo essencial origanum protege as plantas de tomate contra o molde cinza nas estufas 10 e solidago canadensis L. e óleos essenciais cássia têm sido mostrados para preservar morangos pós-colhidos de danos de moldes cinzentos11,12. Esses exemplos ilustram que o biocontrole e, notadamente, os produtos derivados das plantas representam uma solução que combina eficácia biológica e sustentabilidade ambiental.
Assim, as plantas são um importante recurso de moléculas de potencial interesse para a indústria de proteção de culturas. No entanto, apenas um punhado de produtos vegetais foram propostos para serem usados como produtos de biocontrole, embora sejam geralmente reconhecidos como seguros, não fitóxicos e ecológicos2. Algumas dificuldades na transposição do laboratório para o campo têm sido observadas, como a eficácia diminuindo uma vez aplicada in vivo2,9. Assim, torna-se importante melhorar a capacidade dos testes de laboratório para melhor prever a eficácia do campo. Neste contexto, métodos de teste antifúngicos para produtos derivados de plantas são necessários tanto para avaliar sua eficácia antifúngica quanto para definir suas condições ideais de uso. Especificamente, os produtos de biocontrole são geralmente menos eficientes do que fungicidas químicos, por isso uma melhor compreensão de seu modo de ação é importante para propor formulações adequadas, identificar o modo de aplicação nos campos e definir qual estágio de desenvolvimento do patógeno é vulnerável ao bioproduto candidato.
As abordagens atuais que abordam atividades antibacterianas e antifúngicas incluem métodos de difusão, como difusão de disco de ágar, diluição, bioautografia e citometria de fluxo13. A maioria dessas técnicas, e mais especificamente, os testes padrão de suscetibilidade antifúngicos – ensaios de difusão e diluição de ágar-disco – são bem adaptados para avaliar a atividade antimicrobiana de compostos solúveis em esporos bacterianos e fúngicos em suspensões líquidas14. No entanto, esses métodos geralmente não são adequados para testar compostos sólidos, como pó vegetal seco ou para quantificar a atividade antifúngica durante o crescimento do micélio, pois requerem diluição de esporos ou esporos espalhados em placas de ágar e/ou diluição de compostos antifúngicos13. No método envenenado por alimentos, as placas de ágar contendo o agente antifúngico são inoculadas com um disco de 5-7 mm de diâmetro amostrado de uma cultura de fungos de 7 dias de idade sem considerar a quantidade precisa de micélio inicial. Após a incubação, a atividade antifúngica é determinada como um por cento da inibição do crescimento radial17,18,19. Com essa abordagem podemos avaliar a atividade antifúngica no crescimento micelial. Em contraste, o método de diluição de ágar é realizado para determinar a atividade antifúngica em esporos diretamente inoculados na superfície da placa de ágar contendo os compostos antifúngicos13,20,21. Essas duas abordagens dão resultados complementares sobre a atividade antifúngica. No entanto, estas são duas técnicas independentes usadas em paralelo que não fornecem comparação lado a lado precisa da eficácia relativa dos compostos antifúngicos em esporos e micélio17,20,22 como a quantidade de material fúngico inicial difere nas duas abordagens. Além disso, a atividade antifúngica de um produto derivado de plantas muitas vezes resulta da combinação de moléculas antifúngicas sintetizadas pelas plantas para enfrentar patógenos. Essas moléculas abrangem proteínas, peptídeos23,24, e metabólitos com ampla diversidade química e pertencentes a diferentes classes de moléculas como polifenóis, terpenos, alcaloïds25, glucosinolas8, e compostos organosulfur26. Algumas dessas moléculas são voláteis ou se tornam voláteis durante o ataque de patógenos27. Esses agentes são, na maioria das vezes, compostos solúveis em água e alta pressão de vapor que devem ser recuperados através da destilação da água como óleos essenciais, alguns dos quais atividades antimicrobianas foram bem estabelecidas28. Ensaios de suscetibilidade mediados em fase de vapor foram desenvolvidos para medir a atividade antimicrobiana de compostos voláteis após a evaporação e migração através da fase de vapor29. Esses métodos baseiam-se na introdução de compostos antifúngicos à distância da cultura microbiana29,30,31,32,33. No ensaio ágar comumente usado em fase de vapor, óleos essenciais são depositados em um disco de papel e colocados no centro da tampa da placa de Petri à distância da suspensão de esporos bacterianos ou fúngicos, que é espalhada no meio ágar. O diâmetro da zona de inibição do crescimento é então medido da mesma forma que para o método de difusão do disco de ágar20,24. Outras abordagens foram desenvolvidas para fornecer a medição quantitativa da suscetibilidade antifúngica da fase vapor de óleos essenciais, derivadas do método de diluição do caldo do qual foi calculada uma atividade antimicrobiana mediada por vapor inibitório32, ou derivado de ensaios de difusão de ágar-disco31. Esses métodos são geralmente específicos para estudos de atividade em fase de vapor e não são apropriados para ensaios de inibição de contato. Isso exclui a determinação da contribuição relativa de agentes voláteis e não voláteis para a atividade antifúngica de uma complexa mistura bioativa.
O método quantitativo que desenvolvemos visa medir o efeito antifúngico do pó de plantas secas em quantidades controladas de esporos e micélio cultivado depositado na superfície de um meio de ágar para reproduzir o crescimento aéreo de fitopatógenos durante a infecção das plantas15, bem como uma rede mycelial interconectada16. A abordagem é uma configuração experimental modificada baseada nos métodos de diluição de ágar e alimentos envenenados que também permite, na mesma configuração experimental, quantificação lado a lado da contribuição de metabólitos antifúngicos voláteis e não voláteis. Neste estudo, o método foi avaliado em relação à atividade de três preparações antifúngicas bem caracterizadas.
A abordagem aqui apresentada permite a avaliação de propriedades antifúngicas de produtos minimamente processados derivados de plantas. Neste protocolo, a distribuição homogênea dos esporos na superfície do ágar é alcançada utilizando contas de vidro de 2 mm. Esta etapa requer habilidades de manuseio para distribuir corretamente as contas e obter resultados reprodutíveis, permitindo, em última análise, a comparação de efeitos antifúngicos em diferentes estágios de crescimento fúngico. Descobrimos que co…
The authors have nothing to disclose.
Somos muito gratos a Frank Yates por seu precioso conselho. Este trabalho foi apoiado pela Sup’Biotech.
Autoclave-vacuclav 24B+ | Melag | ||
Carbendazim | Sigma | 378674-100G | |
Distilled water | |||
Eppendorf tubes | Sarstedt | 72.706 | 1.5 mL |
Falcons tubes | Sarstedt | 547254 | 50 mL |
Five millimeters diameter stainless steel tube | retail store | / | |
Food dehydrator | Sancusto | six trays | |
Garlic powder | Organic shop | ||
Glass beads | CLOUP | 65020 | 2 mm |
Hemocytometer counting cell | Jeulin | 713442 | / |
Incubator | Memmert | UM400 | 30 °C |
Knife mill | Bosch | TSM6A013B | |
Manual cell counter | Labbox | HCNT-001-001 | / |
Measuring ruler | retail store | ||
Microbiological safety cabinets | FASTER | FASTER BHA36, TYPE II, Cat 2 | |
Micropipette | Mettler-Toledo | 17014407 | 100 – 1000 µL |
Micropipette | Mettler-Toledo | 17014411 | 20 – 200 µL |
Micropipette | Mettler-Toledo | 17014412 | 2 – 20 µL |
Petri dish | Sarstedt | 82-1194500 | 55 mm |
Petri dish | Sarstedt | 82-1473 | 90 mm |
Pipette Controllers-EASY 60 | Labbox | EASY-P60-001 | / |
Potato Dextrose Agar | Sigma | 70139-500G | |
Precision scale-RADWAG | Grosseron | B126698 | AS220.R2-ML 220g/0.1mg |
Rake | Sarstedt | 86-1569001 | / |
Reverse microscope AE31E trinocular | Grosseron | M097917 | / |
Sterile graduated pipette | Sarstedt | 1254001 | 10 mL |
Thymus essential oil | Drugstore | Essential oil 100% | |
Tips 1000 µL | Sarstedt | 70.762010 | |
Tips 20 µL | Sarstedt | 70.760012 | |
Tips 200 µL | Sarstedt | 70.760002 | |
Tooth pick | retail store | ||
Trichoderma spp strain | Strain of LRPIA laboratory | ||
Tween-20 | Sigma | P1379-250ML | |
Tween-80 | Sigma | P1754-1L | |
Tweezers | Labbox | FORS-001-002 | / |