Summary

Combinación de hibridación in situ de fluorescencia múltiple con inmunohistoquímica fluorescente en secciones de cerebro de ratón frescas, congeladas o fijas

Published: June 25, 2021
doi:

Summary

Este protocolo describe un método para combinar la hibridación fluorescente in situ (FISH) y la inmunohistoquímica de fluorescencia (IHC) en secciones de cerebro de ratón frescas congeladas y fijas, con el objetivo de lograr una señal de FISH y IHC de fluorescencia multimarca. IHQ se dirigió a proteínas citoplasmáticas y unidas a la membrana.

Abstract

La hibridación fluorescente in situ (FISH) es una técnica molecular que identifica la presencia y distribución espacial de transcritos específicos de ARN dentro de las células. El fenotipado neuroquímico de neuronas identificadas funcionalmente suele requerir un marcaje concurrente con múltiples anticuerpos (proteína diana) mediante inmunohistoquímica (IHQ) y la optimización de la hibridación in situ (ARN dirigido), en conjunto. Se puede lograr una “firma neuroquímica” para caracterizar neuronas particulares, sin embargo, los factores que complican la situación incluyen la necesidad de verificar los objetivos de FISH e IHQ antes de combinar los métodos, y el número limitado de ARN y proteínas que pueden ser atacados simultáneamente dentro de la misma sección de tejido.

Aquí describimos un protocolo, utilizando preparaciones cerebrales de ratón frescas congeladas y fijadas, que detecta múltiples ARNm y proteínas en la misma sección cerebral utilizando RNAscope FISH seguido de inmunotinción de fluorescencia, respectivamente. Utilizamos el método combinado para describir el patrón de expresión de ARNm de baja abundancia (p. ej., receptor de galanina 1) y ARNm de alta abundancia (p. ej., transportador de glicina 2), en núcleos de tronco encefálico identificados inmunohistoquímicamente.

Las consideraciones clave para el etiquetado de proteínas aguas abajo del ensayo FISH van más allá de la preparación de tejidos y la optimización del etiquetado de la sonda FISH. Por ejemplo, descubrimos que la especificidad de unión y etiquetado de anticuerpos puede verse afectada negativamente por el paso de proteasa dentro del ensayo de sonda FISH. Las proteasas catalizan la escisión hidrolítica de los enlaces peptídicos, lo que facilita la entrada de la sonda FISH en las células, sin embargo, también pueden digerir la proteína objetivo del ensayo IHQ posterior, produciendo una unión fuera del objetivo. La localización subcelular de la proteína diana es otro factor que contribuye al éxito de la IHQ tras el ensayo de la sonda FISH. Observamos que la especificidad de la IHQ se conserva cuando la proteína diana está unida a la membrana, mientras que la IHQ dirigida a la proteína citoplasmática requirió una amplia resolución de problemas. Finalmente, encontramos que el manejo del tejido congelado fijo montado en portaobjetos es más desafiante que el tejido congelado fresco, sin embargo, la calidad de la IHQ fue en general mejor con el tejido congelado fijo, cuando se combinó con ARNscope.

Introduction

Las proteínas y los ARNm que definen neuroquímicamente las subpoblaciones de neuronas se identifican comúnmente con una combinación de inmunohistoquímica (IHQ) y/o hibridación in situ (ISH), respectivamente. La combinación de ISH con técnicas IHQ facilita la caracterización de patrones de colocalización exclusivos de las neuronas funcionales (codificación neuroquímica) al maximizar la capacidad de marcaje múltiple.

Los métodos de ISH fluorescentes (FISH), incluido el ARNoscopio, tienen una mayor sensibilidad y especificidad en comparación con los métodos de detección de ARN anteriores, como el ISH radiactivo y el ISH cromogénico no radiactivo. FISH permite la visualización de transcripciones individuales de ARNm como manchas teñidas punteadas1. Además, el ensayo RNAscope permite marcar un mayor número de dianas de ARN a la vez, utilizando diferentes etiquetas de fluoróforos. A pesar de estas ventajas, las limitaciones técnicas pueden afectar al número de fluoróforos/cromógenos que se pueden utilizar en un solo experimento. Estos incluyen la disponibilidad de juegos de filtros de microscopio; estas consideraciones se agravan cuando la identificación neuroquímica utiliza la combinación de FISH e IHQ, en comparación con el uso de cada técnica de forma aislada, ya que los pasos inherentes óptimos para un método pueden ser perjudiciales para el otro.

La aplicación previa de FISH combinada con IHQ ha demostrado la expresión de dianas celulares específicas en linfomas de células B humanas2, embriones de pollo3, embriones de pez cebra4, retina de ratón5 y células del oído interno de ratón6. En estos estudios, la preparación del tejido se realizó en parafina fijada en formol (FFPE)2,3,5 o en montura entera fresca 4,6. Otros estudios aplicaron el ARNoscopio cromogénico en preparaciones fijas de cerebro de ratón y rata 7,8,9. En particular, Baleriola et al.8 describieron dos preparaciones tisulares diferentes para la combinación de ISH-IHC; secciones fijas del cerebro del ratón y secciones del cerebro humano FFPE. En una publicación reciente, combinamos FISH e IHQ fluorescente en secciones frescas congeladas, para visualizar simultáneamente ARNm de baja abundancia (receptor de galanina 1, GalR1), ARNm de alta abundancia (transportador de glicina 2, GlyT2) y proteína10 transportadora vesicular de acetilcolina (vAChT) en la formación reticular del tronco encefálico.

El núcleo del tracto solitario (NTS, por sus siglas en inglés) es una de las principales regiones del cerebro implicada en la función autonómica. Situada en el cerebro posterior, esta población heterogénea de neuronas recibe e integra un gran número de señales autónomas, incluidas las que regulan la respiración. El NTS alberga varias poblaciones neuronales, que pueden caracterizarse fenotípicamente por el patrón de expresión de dianas de ARNm que incluyen GalR1 y GlyT2 y marcadores proteicos para la enzima tirosina hidroxilasa (TH) y el factor de transcripción Paired-like homeobox 2b (Phox2b).

El propietario de RNAscope recomienda preparaciones de tejido fresco congelado, pero el tejido preparado por fijación de perfusión transcárdica de animal entero, junto con la crioprotección a largo plazo (almacenamiento a -20 °C) de secciones fijas de tejido congelado, es común en muchos laboratorios. Por lo tanto, se buscó establecer protocolos para la FISH en combinación con IHQ utilizando preparaciones de tejido fresco congelado y congelado fijo. Aquí, proporcionamos secciones cerebrales frescas congeladas y congeladas fijas: (1) un protocolo para FISH combinado e IHQ fluorescente (2) una descripción de la calidad del ARNm y el marcaje de proteínas producido, cuando se utiliza cada preparación (3) una descripción de la expresión de GalR1 y GlyT2 en el NTS.

Nuestro estudio reveló que, cuando se combinó con la metodología de ARNoscopio, el éxito de la IHC varió en las preparaciones frescas congeladas y congeladas fijas y dependió de la localización de las proteínas diana dentro de la célula. En nuestras manos, el marcaje de proteínas unidas a la membrana siempre tuvo éxito. Por el contrario, la IHQ para la proteína citoplasmática requirió la resolución de problemas incluso en los casos en que la proteína citoplasmática estaba sobreexpresada en un animal transgénico (Phox2b-GFP)11. Finalmente, mientras que GalR1 se expresa en neuronas no catecolaminérgicas en el NTS, la expresión de GlyT2 está ausente en el NTS.

Protocol

En la Figura 1 se puede encontrar un resumen de los pasos de preprocesamiento de tejidos. Todos los procedimientos se llevaron a cabo de conformidad con el Comité de Ética y Cuidado de los Animales de la Universidad de Nueva Gales del Sur de acuerdo con las directrices para el uso y cuidado de los animales con fines científicos (Consejo Nacional de Salud e Investigación Médica de Australia). 1. Preparación de muestras de tejido cerebral fresco congelado <o…

Representative Results

Aquí, describimos un método para combinar FISH multiplex con IHQ fluorescente para localizar la expresión de ARNm para GalR1 y GlyT2 utilizando tejidos frescos congelados y fijados con paraformaldehído, respectivamente, en el NTS de ratón. En la Figura 1 y en la Figura 2 se muestra una línea de procesamiento de tejidos, FISH y procedimientos IHQ descritos en los métodos. La Tabla 1 proporciona un resumen de las combinaciones de sonda FISH…

Discussion

En las neurociencias, la FISH y la IHQ se utilizan de forma rutinaria para investigar la organización espacial y la importancia funcional del ARNm o las proteínas dentro de las subpoblaciones neuronales. El protocolo descrito en este estudio mejora la capacidad de detección simultánea de ARNm y proteínas en secciones cerebrales. Nuestro ensayo combinado multiplex FISH-IHC permitió la identificación fenotípica de distintas subpoblaciones neuronales en el NTS tanto en preparaciones cerebrales frescas congeladas com…

Acknowledgements

Este trabajo fue financiado por la subvención del Proyecto de Descubrimiento del Consejo de Investigación Australiano DP180101890 y la subvención del proyecto de la Fundación de Investigación Médica Rebecca L Cooper PG2018110

Materials

ANIMALS
C57BL/6 mouse Australian BioResources, Moss Vale MGI: 2159769
Phox2b-eGFP mouse Australian BioResources, Moss Vale MGI: 5776545
REAGENTS
Cyanoacrylate Loctite
Ethylene Glycol Sigma-Aldrich 324558
Heparin-Sodium Clifford Hallam Healthcare 1070760 Consult local veterinary supplier or pharmacy.
Lethabarb (Sodium Pentabarbitol) Euthanasia Injection Virbac (Australia) Pty Ltd N/A Consult a veterinarian for local pharmaceutical regulations regarding Sodium Pentabarbitol
Molecular grade agarose powder Sigma Aldrich 5077
OCT Compound, 118mL Scigen Ltd 4586
Paraformaldehyde, prilled, 95% Sigma-Aldrich 441244-1KG
Polyvinylpyrrolidone, average mol wt 40,000  (PVP-40) Sigma-Aldrich PVP40
ProLong Gold Antifade Mountant Invitrogen P36930 With or without DAPI
RNAscope Multiplex Fluorescent Reagent Kit (up to 3-plex capability) Advanced Cell Diagnostics, Inc. (ACD Bio) ADV320850 Includes 50x Wash buffer and Protease III
RNase Away Thermo-Fisher Scientific 7003
Tris(hydroxymethyl)aminomethane Sigma-Aldrich 252859
Tween-20, for molecular biology Sigma-Aldrich P9416
EQUIPMENT
Benchtop incubator Thermoline scientific micro incubator Model: TEI-13G
Brain Matrix, Mouse, 30g Adult, Coronal, 1mm Ted Pella 15050
Cryostat Leica CM1950
Drawing-up needle (23 inch gauge) BD 0288U07
Hydrophobic Barrier Pen Vector labs H-4000
Kimtech Science Kimwipes Delicate Task Wipes Kimberley Clark Professional 34120
Olympus BX51 Olympus BX-51
Peristaltic pump Coleparmer Masterflex L/S Series 
Retiga 2000R Digital Camera QImaging RET-2000R-F-CLR colour camera
SuperFrost Plus Glass Slides (White) Thermo-Fisher Scientific 4951PLUS4
Vibrating Microtome (Vibratome) Leica VT1200S
Whatman qualitative filter paper, Grade 1, 110 mm diameter Merck WHA1001110
SOFTWARES
CorelDRAW  Corel Corporation Version 7
FIJI (ImageJ Distribution) Open Source/GNU General Public Licence (GPL) N/A ImageJ 2.x: Rueden, C. T.; Schindelin, J. & Hiner, M. C. et al. (2017), "ImageJ2: ImageJ for the next generation of scientific image data", BMC Bioinformatics 18:529, PMID 29187165, doi:10.1186/s12859-017-1934-z   and Fiji: Schindelin, J.; Arganda-Carreras, I. & Frise, E. et al. (2012), "Fiji: an open-source platform for biological-image analysis", Nature methods 9(7): 676-682, PMID 22743772, doi:10.1038/nmeth.2019 
PRIMARY ANTIBODIES
Anti-Tyrosine Hydroxylase Antibody Millipore Sigma AB1542 Sheep polyclonal (1:1000 dilution), RRID: AB_90755
Anti-Tyrosine Hydroxylase Antibody, clone LNC1 Millipore Sigma MAB318 Mouse monoclonal (1:1000 dilution), RRID: AB_2201528
Anti-Vesicular Acetylcholine Transporter (VAchT) Antibody Sigma-Aldrich ABN100 Goat polyclonal (1:1000 dilution), RRID: AB_2630394
GFP Antibody Novus Biologicals NB600-308 Rabbit polyclonal (1:1000 dilution), RRID: AB_10003058
Phox2b Antibody (B-11) Santa Cruz Biotechnology sc-376997 Mouse monoclonal (1:1000 dilution), RRID: AB_2813765
SECONDARY ANTIBODIES
Alexa Fluor 488 AffiniPure Donkey Anti-Rabbit IgG (H+L) (min X Bov, Ck, Gt, GP, Sy Hms, Hrs, Hu, Ms, Rat, Shp Sr Prot)  Jackson ImmunoResearch 711-545-152 Donkey anti-Rabbit (1:400 dilution), RRID: AB_2313584
AMCA AffiniPure Donkey Anti-Sheep IgG (H+L) (min X Ck, GP, Sy Hms, Hrs, Hu, Ms, Rb, Rat Sr Prot) Jackson ImmunoResearch 713-155-147 Donkey anti-Sheep (1:400 dilution), RRID: AB_AB_2340725
Cy5 AffiniPure Donkey Anti-Goat IgG (H+L) (min X Ck, GP, Sy Hms, Hrs, Hu, Ms, Rb, Rat Sr Prot) Jackson ImmunoResearch 705-175-147 Donkey anti-Goat (1:400 dilution), RRID: AB_2340415
Cy5 AffiniPure Donkey Anti-Mouse IgG (H+L) (min X Bov, Ck, Gt, GP, Sy Hms, Hrs, Hu, Rb, Rat, Shp Sr Prot) Jackson ImmunoResearch 715-175-151 Donkey anti-Mouse (1:400 dilution), RRID: AB_2619678
Cy5 AffiniPure Donkey Anti-Sheep IgG (H+L) (min X Ck, GP, Sy Hms, Hrs, Hu, Ms, Rb, Rat Sr Prot) Jackson ImmunoResearch 713-175-147 Donkey anti-Sheep (1:400 dilution), RRID: AB_2340730
RNASCOPE PROBES
Galanin Receptor 1 oligonucleotide probe ACDBio 448821-C1 targets bp 482 – 1669 (Genebank ref: NM_008082.2)
Glycine transporter 2 oligonucleotide probe ACDBio 409741-C3 targets bp 925 – 2153 (Genebank ref: NM_148931.3)
Phox2b oligonucleotide probe ACDBio 407861-C2 targets bp 1617 – 2790 (Genebank ref: NM_008888.3)

References

  1. Wang, F., et al. RNAscope: a novel in situ RNA analysis platform for formalin-fixed, paraffin-embedded tissues. Journal of Molecular Diagnostics. 14 (1), 22-29 (2012).
  2. Annese, T., et al. RNAscope dual ISH-IHC technology to study angiogenesis in diffuse large B-cell lymphomas. Histochemistry and Cell Biology. 153 (3), 185-192 (2020).
  3. Morrison, J. A., McKinney, M. C., Kulesa, P. M. Resolving in vivo gene expression during collective cell migration using an integrated RNAscope, immunohistochemistry and tissue clearing method. Mechanisms of Development. 148, 100-106 (2017).
  4. Gross-Thebing, T., Paksa, A., Raz, E. Simultaneous high-resolution detection of multiple transcripts combined with localization of proteins in whole-mount embryos. BMC Biology. 12, 55 (2014).
  5. Stempel, A. J., Morgans, C. W., Stout, J. T., Appukuttan, B. Simultaneous visualization and cell-specific confirmation of RNA and protein in the mouse retina. Molecular Vision. 20, 1366-1373 (2014).
  6. Kersigo, J., et al. A RNAscope whole mount approach that can be combined with immunofluorescence to quantify differential distribution of mRNA. Cell and Tissue Research. 374 (2), 251-262 (2018).
  7. Grabinski, T. M., Kneynsberg, A., Manfredsson, F. P., Kanaan, N. M. A method for combining RNAscope in situ hybridization with immunohistochemistry in thick free-floating brain sections and primary neuronal cultures. PLoS One. 10 (3), 0120120 (2015).
  8. Baleriola, J., Jean, Y., Troy, C., Hengst, U. Detection of axonally localized mRNAs in brain sections using high-resolution in situ hybridization. Journal of Visualized Experiments. (100), e52799 (2015).
  9. Fe Lanfranco, M., Loane, D. J., Mocchetti, I., Burns, M. P., Villapol, S. Combination of fluorescent in situ hybridization (FISH) and immunofluorescence imaging for detection of cytokine expression in microglia/macrophage cells. Bio-Protocol. 7 (22), (2017).
  10. Dereli, A. S., Yaseen, Z., Carrive, P., Kumar, N. N. Adaptation of respiratory-related brain regions to long-term hypercapnia: focus on neuropeptides in the RTN. Frontiers in Neuroscience. 13, 1343 (2019).
  11. Lazarenko, R. M., et al. Acid sensitivity and ultrastructure of the retrotrapezoid nucleus in Phox2b-EGFP transgenic mice. Journal of Comparative Neurology. 517 (1), 69-86 (2009).
  12. Gage, G. J., Kipke, D. R., Shain, W. Whole animal perfusion fixation for rodents. Journal of Visualized Experiments. (65), e3564 (2012).
  13. Paxinos, G., Franklin, K. B. . The mouse brain in stereotaxic coordinates. , (2004).
  14. Abercrombie, M. Estimation of nuclear population from microtome sections. Anatomical Records. 94, 239-247 (1946).
  15. Kerr, N., et al. The generation of knock-in mice expressing fluorescently tagged galanin receptors 1 and 2. Molecular and Cellular Neurosciences. 68, 258-271 (2015).
  16. Kachidian, P., Pickel, V. M. Localization of tyrosine hydroxylase in neuronal targets and efferents of the area postrema in the nucleus tractus solitarii of the rat. Journal of Comparative Neurology. 329 (3), 337-353 (1993).
  17. Stornetta, R. L., et al. Expression of Phox2b by brainstem neurons involved in chemosensory integration in the adult rat. Journal of Neuroscience. 26 (40), 10305-10314 (2006).
  18. Gilmor, M. L., et al. Expression of the putative vesicular acetylcholine transporter in rat brain and localization in cholinergic synaptic vesicles. Journal of Neuroscience. 16 (7), 2179-2190 (1996).
  19. Fisher, J. M., Sossin, W., Newcomb, R., Scheller, R. H. Multiple neuropeptides derived from a common precursor are differentially packaged and transported. Cell. 54 (6), 813-822 (1988).
  20. Towle, A. C., Lauder, J. M., Joh, T. H. Optimization of tyrosine-hydroxylase immunocytochemistry in paraffin sections using pretreatment with proteolytic-enzymes. Journal of Histochemistry and Cytochemistry. 32 (7), 766-770 (1984).
  21. Biancardi, V., et al. Mapping of the excitatory, inhibitory, and modulatory afferent projections to the anatomically defined active expiratory oscillator in adult male rats. Journal of Comparative Neurology. 529 (4), 853-884 (2021).
  22. Matthews, D. W., et al. Feedback in the brainstem: an excitatory disynaptic pathway for control of whisking. Journal of Comparative Neurology. 523 (6), 921-942 (2015).
  23. Ramos-Vara, J. A. Principles and methods of immunohistochemistry. Methods in Molecular Biology. 1641, 115-128 (2017).
  24. Shi, S. R., Key, M. E., Kalra, K. L. Antigen retrieval in formalin-fixed, paraffin-embedded tissues: an enhancement method for immunohistochemical staining based on microwave oven heating of tissue sections. Journal of Histochemistry and Cytochemistry. 39 (6), 741-748 (1991).
  25. Yamashita, S., Katsumata, O. Heat-induced antigen retrieval in immunohistochemistry: mechanisms and applications. Methods in Molecular Biology. 1560, 147-161 (2017).
  26. Yamashita, S., Okada, Y. Mechanisms of heat-induced antigen retrieval: analyses in vitro employing SDS-PAGE and immunohistochemistry. Journal of Histochemistry and Cytochemistry. 53 (1), 13-21 (2005).
  27. Yamashita, S. Heat-induced antigen retrieval: mechanisms and application to histochemistry. Progress in Histochemistry and Cytochemistry. 41 (3), 141-200 (2007).

Play Video

Cite This Article
Dereli, A. S., Bailey, E. J., Kumar, N. N. Combining Multiplex Fluorescence In Situ Hybridization with Fluorescent Immunohistochemistry on Fresh Frozen or Fixed Mouse Brain Sections. J. Vis. Exp. (172), e61709, doi:10.3791/61709 (2021).

View Video