Summary

金ナノ粒子とCucurbit[n]urilの凝集体内の正確なプラズモニックナノ接合の形成による尿酸の定量的SERS検出

Published: October 03, 2020
doi:

Summary

ウリ科植物[7]ウリルと尿酸のホスト-ゲスト複合体を水溶液中で形成した後、Au NP溶液に少量添加し、モジュール式分光計を用いた定量的表面増強ラマン分光法(SERS)センシングを行った。

Abstract

この研究は、重要なバイオマーカーである尿酸(UA)を、指紋領域の複数の特徴的なピークに対して〜0.2μMの低い検出限界で表面増強ラマン分光法(SERS)を介して、モジュラー分光計を使用して定量的に検出するための迅速かつ高感度な方法を説明する。このバイオセンシングスキームは、大環状体、ウリ科植物[7]uril(CB7)、およびUAの間の宿主 – ゲスト複合体形成、およびその後の自己組織化Au NP:CB7ナノ集合体内の正確なプラズモニックナノ接合の形成によって媒介される。SERS基板にとって望ましいサイズの容易なAu NP合成も、ラボで構築された自動シンセサイザーを使用して容易にするオプションを備えた古典的なクエン酸還元アプローチに基づいて行われています。このプロトコルは、臨床応用のための体液中のバイオマーカーの多重化検出に容易に拡張することができる。

Introduction

プリンヌクレオチドの代謝の最終産物である尿酸は、痛風、子癇前症、腎疾患、高血圧、心血管疾患および糖尿病などの疾患の診断のための血清および尿中の重要なバイオマーカーである1,2,3,4,5尿酸検出のための現在の方法には、比色酵素アッセイ、高速液体クロマトグラフィーおよびキャピラリー電気泳動が含まれるが、これらは時間がかかり、高価であり、洗練されたサンプル調製を必要とする6789

表面増強ラマン分光法は、振動指紋を介して生体分子を選択的に検出でき、高感度、迅速な応答、使いやすさ、サンプル調製がゼロまたは最小限に抑えられるなど、多くの利点を提供するため、日常的なポイントオブケア診断に有望な技術です。貴金属ナノ粒子(例えば、Au NPs)に基づくSERS基板は、表面プラズモン共鳴11によって引き起こされる強力な電磁増強を介して、分析物分子のラマンシグナルを4〜10桁10桁増強することができる。カスタマイズされたサイズのAu NPは、複雑な金属ナノコンポジット12の時間のかかる製造とは対照的に容易に合成することができ、したがって、その優れた特性1314、1516のために生物医学的用途において広く使用されている。大環状分子であるウリ科植物[n]urils(CBnここでn = 5-8, 10)をAu NPの表面上に付着させることで、高度に対称で剛直なCB分子がAu NP間の正確な間隔を制御し、ホスト-ゲスト複合体の形成を介してプラズモニックホットスポットの中心または近接する分析物分子を局在させることができるため、分析物分子のSERSシグナルをさらに高めることができます(図1)1718,19,20。Au NP:CBnナノ凝集体を用いたSERS研究の以前の例には、ニトロ爆発物、多環芳香族化合物、ジアミノスチルベン、神経伝達物質およびクレアチニン21222324、25が含まれSERS測定はキュベット内でまたはカスタムメイドのサンプルホルダーに小さな液滴を装填することによって行われる。この検出スキームは、高い再現性で複雑なマトリックス中のバイオマーカーを迅速に定量するために特に有用である。

本明細書では、CB7と重要なバイオマーカーUAの宿主 – ゲスト複合体を形成し、水性媒体中のAu NPのCB7媒介凝集を介して0.2μMの検出限界を有するUAを定量するための容易な方法が、診断および臨床用途に有望であるモジュラー分光計を用いて実証された。

Protocol

1. Au NPの合成 従来のトルケビッチ法によるAu種子の合成26 98.5 mgのHAuCl4·3H2O前駆体をガラスバイアル中の10mLの脱イオン水と共に使用する。注:HAuCl 4前駆体は金属ラボウェアを腐食させるため、少量のHAuCl4前駆体を計量ボートに移し、金属ヘラの代わりにプラスチックヘラを使用して結晶を計量します。HAuCl4は吸…

Representative Results

提示されたAu NP合成では、UV-Visスペクトルは10の成長ステップ後にLSPRピークの521nmから529nmへのシフトを示し(図4 A,B)、DLSデータはAu NPのサイズが25.9nmから42.8nmに増加するにつれて狭いサイズ分布を示す(図4C,D)。TEM画像から測定されたG0、G5、G10の平均サイズ(図4E)は、それぞれ20.1±2.1nm、32.5±2.3nm、40.0±2.2…

Discussion

プロトコルに記載されている自動合成法により、サイズが増大するAu NPを再現性よく合成することができます。種子合成中のクエン酸ナトリウムの迅速な添加や、PEEKチューブが安全であることを確認するために定期的にチェックするなど、手動で行う必要がある要素がいくつかありますが、この方法は、通常、HAuCl 4およびクエン酸ナトリウムの複数回の手動注射を必要とする大きなサイズ(?…

Disclosures

The authors have nothing to disclose.

Acknowledgements

TCLは、王立協会研究助成金2016 R1(RG150551)およびEPSRCの機関スポンサーシップ賞(EP/P511262/1)を通じて資金提供されたUCL BEAMSフューチャーリーダー賞の支援に感謝しています。WIKC、TCL、IPPは、EPSRC M3S CDT(EP/L015862/1)を通じてA*STAR-UCL Research Attachment Programが資金提供している学生シップに感謝しています。GDとTJは、学生生活を支援してくれたEPSRC M3S CDT(EP/L015862/1)に感謝します。TJとTCLは、カムテック・イノベーションズがTJの学生生活に貢献したことを表彰します。すべての著者はUCLオープンアクセス基金に感謝しています。

Materials

40 nm gold nanoparticles NanoComposix AUCN40-100M NanoXact, 0.05 mg/ mL, bare (citrate)
Centrifuge tube Corning Falcon 14-432-22 50 mL volume
Cucurbit[7]uril Lab-made see ref. 19
Gold(III) chloride trihydrate Sigma aldrich 520918 ≥99.9% trace metals basis
Luer lock disposable syringe Cole-Parmer WZ-07945-15 3 mL volume
Luer-to-MicroTight adapter LuerTight P-662 360 μm outer diameter Tubing to Luer Syringe
PEEK tubing IDEX 1572 360 μm outer diameter, 150 μm inner diameter
PEEK tubing cutter IDEX WZ-02013-30 Capillary Polymer Chromatography Tubing Cutter For 360 µm to 1/32" OD tubing
Raman spectrometer Ocean Optics QE pro
Sodium citrate tribasic dihydrate Sigma aldrich S4641 ACS reagent, ≥99.0%
Sonicator
Standard Probe Digi-Sense WZ-08516-55 Type-K
Syringe pump Aladdin ALADDIN2-220 2 syringes, maximum syringe volume 60 mL
Thermocouple thermometer Digi-Sense WZ-20250-91 Single-Input Thermocouple Thermometer with NIST-Traceable Calibration
ThermoMixer Eppendorf 5382000031 With an Eppendorf SmartBlock for 50 mL tubes
Uric acid Sigma aldrich U2625 ≥99%, crystalline

References

  1. Villa, J. E. L., Poppi, R. J. A portable SERS method for the determination of uric acid using a paper-based substrate and multivariate curve resolution. Analyst. 141 (6), 1966-1972 (2016).
  2. Westley, C., et al. Absolute Quantification of Uric Acid in Human Urine Using Surface Enhanced Raman Scattering with the Standard Addition Method. Analytical Chemistry. 89 (4), 2472-2477 (2017).
  3. Zhao, L., Blackburn, J., Brosseau, C. L. Quantitative Detection of Uric Acid by Electrochemical-Surface Enhanced Raman Spectroscopy Using a Multilayered Au/Ag Substrate. Analytical Chemistry. 87 (1), 441-447 (2015).
  4. Goodall, B. L., Robinson, A. M., Brosseau, C. L. Electrochemical-surface enhanced Raman spectroscopy (E-SERS) of uric acid: a potential rapid diagnostic method for early preeclampsia detection. Physical Chemistry Chemical Physics. 15 (5), 1382-1388 (2013).
  5. Lytvyn, Y., Perkins, B. A., Cherney, D. Z. I. Uric Acid as a Biomarker and a Therapeutic Target in Diabetes. Canadian Journal of Diabetes. 39 (3), 239-246 (2015).
  6. Ali, S. M. U., Ibupoto, Z. H., Kashif, M., Hashim, U., Willander, M. A Potentiometric Indirect Uric Acid Sensor Based on ZnO Nanoflakes and Immobilized Uricase. Sensors. 12 (3), 2787-2797 (2012).
  7. Yu, J., Wang, S., Ge, L., Ge, S. A novel chemiluminescence paper microfluidic biosensor based on enzymatic reaction for uric acid determination. Biosensors and Bioelectronics. 26 (7), 3284-3289 (2011).
  8. Yang, Y. D. Simultaneous determination of creatine, uric acid, creatinine and hippuric acid in urine by high performance liquid chromatography. Biomedical Chromatography. 12 (2), 47-49 (1999).
  9. Zhao, S., Wang, J., Ye, F., Liu, Y. M. Determination of uric acid in human urine and serum by capillary electrophoresis with chemiluminescence detection. Analytical Biochemistry. 378 (2), 127-131 (2008).
  10. Fang, Y., Seong, N. H., Dlott, D. D. Measurement of the Distribution of Site Enhancements in Surface-Enhanced Raman Scattering. Science. 321 (5887), 388-392 (2008).
  11. Jeong, H. H., et al. Dispersion and shape engineered plasmonic nanosensors. Nature Communications. 7, 11331 (2016).
  12. Alula, M. T., et al. Preparation of silver nanoparticles coated ZnO/Fe3O4 composites using chemical reduction method for sensitive detection of uric acid via surface-enhanced Raman spectroscopy. Analytica Chimica Acta. 1073, 62-71 (2019).
  13. Bastús, N. G., Comenge, J., Puntes, V. Kinetically Controlled Seeded Growth Synthesis of Citrate-Stabilized Gold Nanoparticles of up to 200 nm: Size Focusing versus Ostwald Ripening. Langmuir. 27 (17), 11098-11105 (2011).
  14. Jeong, H. H., et al. Selectable Nanopattern Arrays for Nanolithographic Imprint and Etch-Mask Applications. Advanced Science. 2 (7), 1500016 (2016).
  15. Loh, X. J., Lee, T. C., Dou, Q., Deen, G. R. Utilising inorganic nanocarriers for gene delivery. Biomaterials Science. 4 (1), 70-86 (2016).
  16. Celiz, A. D., Lee, T. C., Scherman, O. A. Polymer-Mediated Dispersion of Gold Nanoparticles: Using Supramolecular Moieties on the Periphery. Advanced Materials. 21 (38), 3937-3940 (2009).
  17. Lee, T. C., Scherman, O. A. Formation of Dynamic Aggregates in Water by Cucurbit[5]uril Capped with Gold Nanoparticles. ChemComm. 46 (14), 2438-2440 (2010).
  18. Lee, T. C., Scherman, O. A. A Facile Synthesis of Dynamic Supramolecular Aggregates of Cucurbit[n]uril (n = 5-8) Capped with Gold Nanoparticles in Aqueous Media. Chemistry-A European Journal. 18 (6), 1628-1633 (2012).
  19. Taylor, R. W., et al. Precise Subnanometer Plasmonic Junctions for SERS within Gold Nano- particle Assemblies Using Cucurbit[n]uril “Glue”. ACS Nano. 5 (5), 3878-3887 (2011).
  20. Peveler, W. J., et al. Cucurbituril-mediated quantum dot aggregates formed by aqueous self-assembly for sensing applications. ChemComm. 55 (38), 5495-5498 (2019).
  21. Chio, W. I. K., et al. Selective Detection of Nitroexplosives Using Molecular Recognition within Self-Assembled Plasmonic Nanojunctions. The Journal of Physical Chemistry C. 123 (25), 15769-15776 (2019).
  22. Kasera, S., Biedermann, F., Baumberg, J. J., Scherman, O. A., Mahajan, S. Quantitative SERS Using the Sequestration of Small Molecules Inside Precise Plasmonic Nanoconstructs. Nano Letters. 12 (11), 5924-5928 (2012).
  23. Taylor, R. W., et al. In Situ SERS Monitoring of Photochemistry within a Nanojunction Reactor. Nano Letters. 13 (12), 5985-5990 (2013).
  24. Kasera, S., Herrmann, L. O., Barrio, J. d., Baumberg, J. J., Scherman, O. A. Quantitative Multiplexing with Nano-Self-Assemblies in SERS. Scientific Reports. 4, 6785 (2014).
  25. Chio, W. I. K., et al. Dual-triggered nanoaggregates of cucurbit[7]uril and gold nanoparticles for multi-spectroscopic quantification of creatinine in urinalysis. Journal of Materials Chemistry C. 8, 7051-7058 (2020).
  26. Turkevich, J., Stevenson, P. C., Hillier, J. A study of the nucleation and growth processes in the synthesis of colloidal gold. Discussions of the Faraday Society. 11, 55-75 (1951).
  27. Lagona, J., Mukhopadhyay, P., Chakrabarti, S., Issacs, L. The cucurbit[n]uril family. Angewandte Chemie International Edition. 44 (31), 4844-4870 (2005).
  28. . OceanView Installation and Operation Manual Available from: https://www.oceaninsight.com/globalassets/catalog-blocks-and-images/manuals–instruction-old-logo/software/oceanviewio.pdf (2013)
  29. Mahajan, S., et al. Raman and SERS spectroscopy of cucurbit[n]urils. Physical Chemistry Chemical Physics. 12 (35), 10429-10433 (2010).
  30. Langer, J., et al. Present and Future of Surface-Enhanced Raman Scattering. ACS Nano. 14 (1), 28-117 (2020).
  31. Pilot, R., et al. A Review on Surface-Enhanced Raman Scattering. Biosensors. 9 (2), 57 (2019).
  32. Bantz, K. C., et al. Recent progress in SERS biosensing. Physical Chemistry Chemical Physics. 13 (24), 11551-11567 (2011).
  33. Moore, T. J., et al. In Vitro and In Vivo SERS Biosensing for Disease Diagnosis. Biosensors. 8 (2), 46 (2018).
  34. Bonifacio, A., Cervo, S., Sergo, V. Label-free surface-enhanced Raman spectroscopy of biofluids: fundamental aspects and diagnostic applications. Analytical and Bioanalytical Chemistry. 407 (27), 8265-8277 (2015).
  35. Jeong, H. H., Choi, E., Ellis, E., Lee, T. C. Recent advances in gold nanoparticles for biomedical applications: from hybrid structures to multi-functionality. Journal of Materials Chemistry B. 7 (22), 3480-3496 (2019).
  36. Premasiri, W. R., Clarke, R. H., Womble, M. E. Urine Analysis by Laser Raman Spectroscopy. Lasers in Surgery and Medicine. 28 (4), 330-334 (2001).
  37. Lu, Y., et al. Superhydrophobic silver film as a SERS substrate for the detection of uric acid and creatinine. Biomedical Optics Express. 9 (10), 4988-4997 (2018).
  38. Feig, D. I., et al. Serum Uric Acid: A Risk Factor and a Target for Treatment. Journal of the American Society of Nephrology. 17 (4), 69-73 (2006).
  39. Maiuolo, J., Oppedisano, F., Gratteri, S., Muscoli, C., Mollace, V. Regulation of uric acid metabolism and excretion. International Journal of Cardiology. 213, 8-14 (2016).

Play Video

Cite This Article
Chio, W. K., Davison, G., Jones, T., Liu, J., Parkin, I. P., Lee, T. Quantitative SERS Detection of Uric Acid via Formation of Precise Plasmonic Nanojunctions within Aggregates of Gold Nanoparticles and Cucurbit[n]uril. J. Vis. Exp. (164), e61682, doi:10.3791/61682 (2020).

View Video