Se describe un protocolo para utilizar el dióxido de carbono en el gas de combustión de la planta de energía de gas natural para cultivar microalgas en estanques abiertos de canales. La inyección de gases de combustión se controla con un sensor de pH, y el crecimiento de las microalgas se monitorea con mediciones en tiempo real de la densidad óptica.
En los Estados Unidos, el 35% de las emisiones totales de dióxido de carbono (CO2) provienen de la industria de la energía eléctrica, de las cuales el 30% representa la generación de electricidad a gas natural. Las microalgas pueden biofijar el CO2 de 10 a 15 veces más rápido que las plantas y convertir la biomasa de algas en productos de interés, como los biocombustibles. Así, este estudio presenta un protocolo que demuestra las sinergias potenciales del cultivo de microalgas con una central eléctrica de gas natural situada en el suroeste de Estados Unidos en un clima cálido semiárido. Las tecnologías de vanguardia se utilizan para mejorar la captura y utilización de carbono a través de la especie de algas verdes Chlorella sorokiniana, que se puede procesar aún más en biocombustible. Describimos un protocolo que involucra un estanque de pista de rodadura abierto semiautomatizado y discutimos los resultados de su rendimiento cuando se probó en la planta de Tucson Electric Power, en Tucson, Arizona. El gas de combustión se utilizó como la principal fuente de carbono para controlar el pH, y se cultivó Chlorella sorokiniana . Se utilizó un medio optimizado para cultivar las algas. La cantidad de CO2 añadida al sistema en función del tiempo fue monitoreada de cerca. Además, se monitorearon otros factores fisicoquímicos que afectan la tasa de crecimiento de algas, la productividad de la biomasa y la fijación de carbono, incluida la densidad óptica, el oxígeno disuelto (DO), la electroconductividad (EC) y las temperaturas del aire y del estanque. Los resultados indican que se puede alcanzar un rendimiento de microalgas de hasta 0,385 g/L de peso seco libre de cenizas, con un contenido lipídico del 24%. Aprovechar las oportunidades sinérgicas entre los emisores de CO2 y los agricultores de algas puede proporcionar los recursos necesarios para aumentar la captura de carbono al tiempo que apoya la producción sostenible de biocombustibles y bioproductos de algas.
El calentamiento global es uno de los problemas ambientales más importantes que enfrenta el mundo hoyen día 1. Los estudios sugieren que la causa principal es el aumento de las emisiones de gases de efecto invernadero (GEI), principalmente CO2, en la atmósfera debido a las actividades humanas 2,3,4,5,6,7. En los Estados Unidos, la mayor densidad de emisiones de CO2 se origina principalmente en la combustión de combustibles fósiles en el sector energético, específicamente en las plantas de generación de energía eléctrica 3,7,8,9. Así, las tecnologías de captura y utilización de carbono (CCU) se han convertido en una de las principales estrategias para reducir las emisionesde GEI 2,7,10. Estos incluyen sistemas biológicos que utilizan la luz solar para convertir el CO2 y el agua a través de la fotosíntesis, en presencia de nutrientes, en biomasa. Se ha propuesto el uso de microalgas debido a la rápida tasa de crecimiento, la alta capacidad de fijación de CO2 y la alta capacidad de producción. Además, las microalgas tienen un amplio potencial de bioenergía porque la biomasa se puede convertir en productos de interés, como los biocombustibles que pueden reemplazar a los combustibles fósiles 7,9,10,11,12.
Las microalgas pueden crecer y lograr la conversión biológica en una variedad de sistemas de cultivo o reactores, incluidos estanques abiertos de canales y fotobiorreactores cerrados 13,14,15,16,17,18,19. Los investigadores han estudiado las ventajas y limitaciones que determinan el éxito del bioproceso en ambos sistemas de cultivo, ya sea en condiciones interiores o exteriores 5,6,16,20,21,22,23,24,25 . Los estanques de canales abiertos son los sistemas de cultivo más comunes para la captura y utilización de carbono en situaciones en las que los gases de combustión se pueden distribuir directamente desde la chimenea. Este tipo de sistema de cultivo es relativamente barato, es fácil de escalar, tiene bajos costos de energía y tiene bajos requisitos de energía para la mezcla. Además, estos sistemas se pueden ubicar fácilmente con la planta de energía para hacer que el proceso de CCU sea más eficiente. Sin embargo, hay algunos inconvenientes que deben tenerse en cuenta, como la limitación en la transferencia de masa de gas / líquido CO2. Aunque existen limitaciones, los estanques de pista de rodadura abiertos se han propuesto como el sistema más adecuado para la producción de biocombustibles de microalgas al aire libre 5,9,11,16,20.
En este artículo, detallamos un método para el cultivo de microalgas en estanques abiertos que combina la captura de carbono del gas de combustión de una planta de energía de gas natural. El método consiste en un sistema semiautomatizado que controla la inyección de gases de combustión en función del pH del cultivo; el sistema monitorea y registra el estado del cultivo de Chlorella sorokiniana en tiempo real utilizando sensores de densidad óptica, oxígeno disuelto (DO), electroconductividad (EC) y temperatura del aire y del estanque. Los datos de biomasa de algas e inyección de gases de combustión son recopilados por un registrador de datos cada 10 minutos en las instalaciones de Tucson Electric Power. El mantenimiento de la cepa de algas, la ampliación, las mediciones de control de calidad y la caracterización de la biomasa (por ejemplo, la correlación entre la densidad óptica, g / L y el contenido de lípidos) se realizan en un entorno de laboratorio en la Universidad de Arizona. Un protocolo anterior describía un método para optimizar la configuración de los gases de combustión para promover el crecimiento de microalgas en fotobiorreactores a través de la simulación por computadora26. El protocolo presentado aquí es único en el sentido de que utiliza estanques de pista de rodadura abiertos y está diseñado para implementarse in situ en una planta de energía de gas natural con el fin de hacer un uso directo del gas de combustión producido. Además, las mediciones de densidad óptica en tiempo real son parte del protocolo. El sistema descrito está optimizado para un clima semiárido cálido (Köppen BSh), que exhibe baja precipitación, variabilidad significativa en la precipitación de un año a otro, baja humedad relativa, altas tasas de evaporación, cielos despejados e intensa radiación solar27.
En este estudio, demostramos que el acoplamiento sinérgico de la captura de carbono de los gases de combustión y el cultivo de microalgas es posible en un clima semiárido caliente. El protocolo experimental para el sistema de estanques semiautomatizados de la pista de rodadura integra tecnología de vanguardia para monitorear parámetros relevantes en tiempo real que se correlacionan con el crecimiento de algas cuando se utiliza gas de combustión como fuente de carbono. El protocolo propuesto está destinado a reduci…
The authors have nothing to disclose.
Este trabajo fue apoyado a través del proyecto Regional Algal Feedstock Testbed, Departamento de Energía de los Estados Unidos DE-EE0006269. También agradecemos a Esteban Jiménez, Jessica Peebles, Francisco Acedo, José Cisneros, RAFT Team, Mark Mansfield, el personal de la planta de energía de UA y el personal de la planta de energía TEP por toda su ayuda.
Adjustable speed motor (paddle wheel system) | Leeson | 174307 | Lesson 174307.00, type: SCR Voltage; Amps:10 |
Aluminum weight boats | Fisher Scientific | 08-732-102 | Fisherbrand Aluminum Weighing Dishes |
Ammonium Iron (III) (NH₄)₅[Fe(C₆H₄O₇)₂] | Fisher Scientific | 1185 – 57 – 5 | Medium preparation. Ammonium iron(III) citrate |
Ammonium Phosphate | Sigma-Aldrich | 7722-76-1 | This chemical is used for the optimized medium |
Ampicillin sodium salt | Sigma Aldrich | A9518-5G | This chemical is used for avoiding algae contamination |
Autoclave | Amerex Instrument Inc | Hirayama HA300MII | |
Bacto agar | Fisher Scientific | BP1423500 | Fisher BioReagents Granulated Agar |
Bleach | Clorox | Germicidal Bleach, concentrated clorox | |
Boric Acid (H3BO3) | Fisher Scientific | 10043-35-3 | Trace Elelements: Boric acid |
Calcium chloride dihydrate (CaCl2*2H2O) | Sigma-Aldrich | 10035-04-8 | Medium preparation. Calcium chloride dihydrate |
Carboys (20 L) | Nalgene – Thermo Fisher Scientific | 2250-0050PK | Polypropylene Carboy w/Handles |
Centrifuge | Beckman Coulter, Inc | J2-21 | |
Chloroform | Sigma-Aldrich | 67-66-3 | This chemical is used for lipid extraction |
Citraplex 20% Iron | Loveland Products | SDS No. 1000595582 -17-LPI | https://www.fbn.com/direct/product/Citraplex-20-Iron#product_info |
Cobalt (II) nitrate hexahydrate (Co(NO3)2*6H2O) | Sigma-Aldrich | 10026-22-9 | Trace Elements: Cobalt (II) nitrate hexahydrate |
Compressor | Makita | MAC700 | This equipment is used for the injection CO2 system |
Control Valve | Sierra Instruments | SmartTrak 100 | This item needs to be customized for your application. In our case, it was used a 5% CO2 and 95% air mixture. |
Copper (II) Sulfate Pentahydrate (CuSO4*5H2O) | Sigma-Aldrich | 7758-99-8 | Trace Elements: Copper (II) Sulfate Pentahydrate |
Data Logger: Campbell unit CR3000 | Scientific Campbell | CR3000 | This equipment is used for controlling all the system, motoring and recording data |
Dissolvde Oxygen Solution | Campbell Scientific | 14055 | Dissolved oxygen electrolyte solution DO6002 – Lot No. 211085 |
Dissolved Oxygen probe | Sensorex | | DO6400/T Dissolved Oxygen Sensor with Digital Communication |
Electroconductivity calibration solution | Ricca Chemical Company | 2245 – 32 ( R2245000-1A ) | Conductivity Standard, 5000 uS/cm at 25C (2620 ppm TDS as NaCl) |
Electroconductivity probe sensor | Hanna Instruments | HI3003/D | Flow-thru Conductivity Probe – NTC Sensor, DIN Connector, 3m Cable |
Ethylenediaminetetraacetic acid disodium salt dihydrate (Na2EDTA*2H2O) | Sigma-Aldrich | 6381-92-6 | Medium Preparation: Ethylenediaminetetraacetic acid disodium salt dihydrate |
Filters | Fisher Scientific | 09-874-48 | Whatman Binder-Free Glass Microfiber Filters |
Flasks | Fisher scientific | 09-552-40 | Pyrex Fernbach Flasks |
Furnace | Hogentogler | Model: F6020C-80 | Thermo Sicentific Thermolyne F6020C – 80 Muffle Furnace |
Glass dessicator | VWR International LLC | 75871-430 | Type 150, 140 mm of diameter |
Glass funnel | Fisher Scientific | FB6005865 | Fisherbrand Reusable Glass Long-Stem Funnels |
Laminar flow hood | Fisher Hamilton Safeair | Fisher Hamilton Stainless Safeair hume hood | |
Magnesium sulfate heptahydrate (MgSO4*7H2O) | Fisher Scientific | 10034 – 99 – 8 | Medium Preparation: Magnesium sulfate heptahydrate |
Methanol | Sigma-Aldrich | 67-56-1 | Lipid extraction solvent |
Micro bubble Diffuser | Pentair Aquatic Eco-Systems | 1PMBD075 | This equipment is used for the injection CO2 system |
Microalgae: Chlorella Sorokiniana | NAABB | DOE 1412 | |
Microoscope | Carl Zeiss 4291097 | ||
Microwave assistant extraction | MARS, CEM Corportation | CEM Mars 5 Xtraction 230/60 Microwave Accelerated Reaction System. Model: 907601 | |
MnCl2*4H2O | Sigma-Aldrich | 13446-34-9 | Manganese(II) chloride tetrahydrate |
Mortars | Fisher Scientific | FB961B | Fisherbrand porcelein mortars |
Nitrogen evaporator | Organomation | N-EVAP 112 Nitrogen Evaporatpr (OA-SYS Heating System) | |
Oven | VWR International LLC | 89511-410 | Forced Air Oven |
Paddle Wheel | 8-blade horizontal axis propeller. This usually comes as part of the paddlewheel reactor. | ||
Paddle wheel motor | Leeson | M1135042.00 | Leeson, Model: CM34025Nz10C; 1/4 HP; Volts 90; FR 34; 62 RPM. |
Pestles | Fisher Scientific | FB961M | Fisherbrand porcelein pestles |
pH and EC Transmitter | Hanna Instruments | HI98143 | Hanna Instruments HI98143-04 pH and EC Transmitter with Galvanic isolated 0-4V. |
pH calibration solutions | Fisher Scientific | 13-643-003 | Thermo Scientific Orion pH Buffer Bottles |
pH probe sensor | Hanna Instruments | HI1006-2005 | Hanna Instruments HI1006-2005 Teflon pH Electrode with matching pin 5m. |
Pippete tips | Fisher Scientific | 1111-2821 | 1000 ul TipOne graduated blue tip in racks |
Pippetter | Fisher Scientific | 13-690-032 | Eppendorf Reserch plus Variable Adjustable Volume Pipettes: Single-channel |
Plastic cuvettes | Fisher scientific | 14377017 | BrandTech BRAND Plastic Cuvettes |
Plates | Fisher scientific | 08-757-100D | Corning Falcon Bacteriological Petri Dishes with Lid |
Potash | This chemical is used for the optimazed medium preparation. It was bought in a fertilizer local company | ||
Potassium phosphate dibasic (K2HPO4) | Sigma-Aldrich | 7758 -11 – 4 | Medium Preparation: Potassium phosphate dibasic |
Pyrex reusable Media Storage Bottles | Fisher scientific | 06-414-2A | 1 L and 2 L bottels – PYREX GL45 Screw Caps with Plug Seals |
Raceway Pond | Similar equipment can be bought at https://microbioengineering.com/products | ||
Real Time Optical Density Sensor | University of Arizona | This equipment was design and build by a member of the group | |
RS232 Cable | Sabrent | Sabrent USB 2.0 to Serial (9-Pin) DB-9 RS-232 Converter Cable, Prolific Chipset, Hexnuts, [Windows 10/8.1/8/7/VISTA/XP, Mac OS X 10.6 and Above] 2.5 Feet (CB-DB9P) | |
Shaker Table | Algae agitation 150 rpm | ||
Sodium Carbonate (Na2CO3) | Sigma-Aldrich | 497-19-8 | Sodium carbonate |
Sodium molybdate dihydrate (Na2MoO4*2H2O) | Sigma-Aldrich | 10102-40-6 | Medium Preparation: Sodium molybdate dihydrate |
Sodium nitrate (NaNO3) | Sigma-Aldrich | 7631-99-4 | Medium Preparation: Sodium nitrate |
Spectophotometer | Fisher Scientific Company | 14-385-400 | Thermo Fisher Scientific – 10S UV-Vis GENESTYS Spectrophotometer cylindrical Longpath cell holder; internal reference dectector, Xenon flash lamp; dual silicon photodiode; 240V, 50 to 60Hz selected automatically. |
Test tubes | Fisher Scientific | 14-961-27 | Fisherbrand Disposable Borosilicate Glass Tubes with Plain End (10 ml) |
Thermocouples type K | Omega | KMQXL-125G-6 | |
Urea | Sigma-Aldrich | 2067-80-3 | Urea |
Vacuum filtration system | Fisher Scientific | XX1514700 | MilliporeSigma Glass Vacuum Filter Holder, 47 mm. The system includes: Ground glass flask attachment, coarse-frit glass filter support, and flask |
Vacuum pump | Grainger | Marathon Electric AC Motor Thermally protected G588DX – MOD 5KH36KNA510X. HP 1/4. RPM 1725/1425 | |
Zinc sulfate heptahydrate (ZnSO4*7H2O) | Sigma-Aldrich | 7446-20-0 | Zinc sulfate heptahydrate |