In diesem Artikel beschreiben wir eine Methode zur Messung der Glykolyse und mitochondrialen Atmung in primären menschlichen natürlichen Killerzellen (NK), die aus peripherem Blut isoliert sind, im Ruhezustand oder nach IL15-induzierter Aktivierung. Das beschriebene Protokoll könnte leicht auf primäre menschliche NK-Zellen ausgedehnt werden, die durch andere Zytokine oder lösliche Reize aktiviert werden.
Natural Killer (NK) Zellen vermitteln hauptsächlich angeborene Anti-Tumor- und antivirale Immunreaktionen und reagieren auf eine Vielzahl von Zytokinen und anderen Reizen, um das Überleben, die Zellproliferation, die Produktion von Zytokinen wie Interferongamma (IFN) und/oder Zytotoxizitätsprogramme zu fördern. Die Aktivierung von NK-Zellen durch Zytokinstimulation erfordert eine erhebliche Umgestaltung der Stoffwechselwege, um ihre bioenergetischen und biosynthetischen Anforderungen zu unterstützen. Es gibt eine große Menge von Beweisen, die darauf hindeuten, dass beeinträchtigter NK-Zellstoffwechsel mit einer Reihe von chronischen Krankheiten wie Fettleibigkeit und Krebs verbunden ist, was die klinische Bedeutung der Verfügbarkeit einer Methode zur Bestimmung des NK-Zellstoffwechsels unterstreicht. Hier beschreiben wir den Einsatz eines extrazellulären Flussanalysators, einer Plattform, die Echtzeitmessungen der Glykolyse und des mitochondrialen Sauerstoffverbrauchs ermöglicht, als Werkzeug zur Überwachung von Veränderungen im Energiestoffwechsel menschlicher NK-Zellen. Die hier beschriebene Methode ermöglicht auch die Überwachung von Stoffwechselveränderungen nach der Stimulation von NK-Zellen mit Zytokinen wie IL-15, einem System, das derzeit in einer Vielzahl von klinischen Studien untersucht wird.
Natürliche Killerzellen (NK) sind angeborene Lymphozyten, die Antitumor- und antivirale Reaktionen vermitteln. NK-Zellen machen 5-15% aller Lymphozyten im menschlichen peripheren Blut aus und können auch in Milz-, Leber-, Knochenmark- und Lymphknoten gefunden werden. NK-Zellen exprimieren keine polymorphen Clonoppic-Rezeptoren wie T-Zell-Rezeptoren (TCR) oder B-Zell-Rezeptoren (BCR). Im Gegensatz dazu wird die Aktivierung ihrer zytolytischen Funktionen durch das Eingreifen von Rezeptoren ausgelöst, die unveränderliche Liganden auf der Oberfläche einer Zielzelle1,2erkennen.
Ruhende menschliche NK-Zellen, die aus peripherem Blut isoliert sind, können mehrere Tage im Kulturmedium überleben, das mit menschlichem Serum ergänzt wird. Die Aktivierung von NK-Zellen durch Zytokine wie IL-15 oder IL-2 treibt die Zellen zur Proliferation und zu einer Erhöhung ihrer Tötungsfähigkeit, unter anderem3,4,5. Mehrere Studien haben eine direkte Korrelation zwischen NK-Zellaktivierung und Veränderungen ihrer metabolischen Aktivität gezeigt6. Diese metabolischen Veränderungen sind dazu bestimmt, die besonderen Anforderungen der Zellen in Bezug auf Energie und Biosynthese zu erfüllen.
Aerobe Zellen und Organismen erhalten Energie durch eine Reihe von chemischen Reaktionen, die den Katabolismus und die Oxidation von Kohlenhydraten, Fett und Proteinen beinhalten. Durch eine Kombination aus Glykolyse, dem Tricarbonsäurezyklus (TCA) und oxidativer Phosphorylierung erfüllen eukaryotische Zellen den Großteil ihres ATP-Bedarfs und erhalten Zwischenprodukte, die als Bausteine für Makromoleküle benötigt werden, die für das Zellwachstum und die Zellproliferation unerlässlich sind. Der Prozess der Glykolyse (Abbildung 1A) beginnt mit dem Eintrag von Glukose in der Zelle. Im Zytosol wird Glukose phosphoryliert und in Pyruvat umgewandelt (mit einer Nettoproduktion von 2 Molekülen VON ATP pro Glukosemolekül), die zu Laktat reduziert oder in die Mitochondrien transportiert werden können, um in Acetyl-CoA umgewandelt zu werden und in den TCA-Zyklus einzutreten. Der TCA-Zyklus setzt den Zyklus mit mehr Molekülen von Acetyl-CoA weiter und produziert CO2 (das schließlich außerhalb der Zelle diffundieren wird und durch Reaktion mitH2O im Medium Kohlensäure erzeugt, die zur Versauerung des Mediums führt) und NADH, dem Molekül, das für die Elektronenabgabe an die Elektronentransportkette (ETC) zuständig ist. Die Elektronen wandern durch verschiedene Proteinkomplexe und werden schließlich durch Sauerstoff akzeptiert. Diese Komplexe (I, III und IV) pumpen auch H+ aus der mitochondrialen Matrix in den Intermembranraum. Als Folge des erzeugten elektrochemischen Gradienten wird das H+ durch die komplexe V (ATP-Synthase) wieder in die Matrix eindringen und die in die ATP-Erzeugung angesammelte potentielle Energie investieren.
Sowohl die Glykolyse als auch die mitochondriale Atmung können an verschiedenen Stellen durch die Verwendung von Inhibitoren blockiert werden. Das Wissen und die Verwendung dieser Inhibitoren war die Grundlage für die Entwicklung des extrazellulären Fluss-Assays. Durch die Messung von zwei einfachen Parametern in Echtzeit wie pH und Sauerstoff leitet der extrazelluläre Flussanalysator die Rate der Glykolyse und der mitochondrialen Atmung in einer 96-Well-Platte ab. Der Glykolyse-Stresstest wird in einem Basalmedium ohne Glukose durchgeführt (Abbildung 1B)7. Die ersten Messungen der extrazellulären Versauerungsrate (ECAR) deuten auf eine glykolyseunabhängige Versauerung hin. Es wird als nicht-glykolytische Versauerung bezeichnet und korreliert mitCO2, das von der TCA produziert wird, die, wie bereits erläutert, mitH2O im Medium kombiniert wird, um H+ (TCA-verknüpftes ECAR) zu erzeugen. Die erste Injektion ist Glukose, um Glukose-Nutzung zu induzieren und DieGlykolyse zu steigern. Die zweite Injektion kombiniert sowohl Roton- als auch ein Complex-I-Hemmer und Antimycin A, ein Komplexer III-Hemmer zusammen, um den ETC zu blockieren. Zellen reagieren auf diese dramatische Abnahme der mitochondrialen ATP-Produktion durch Aktivierung der Glykolyse zur Aufrechterhaltung der zellulären ATP-Spiegel, und dies stellt die Menge an Glykolyse dar, die von der Zelle im Basalzustand nicht verwendet wird, sondern möglicherweise als Reaktion auf die Erhöhung der ATP-Nachfrage rekrutiert werden könnte. Die dritte Injektion ist die Glukose analog e2-Deoxyglucose (DG), die mit Glukose als Substrat für das Enzym Hexokinase konkurriert. Das Produkt dieser Phosphorylierung, 2-Deoxyglucose-6-Phosphat kann nicht in Pyruvat umgewandelt werden, und daher wird die Glykolyse blockiert, was das ECAR auf das Minimum senkt. Das an dieser Stelle gemessene ECAR umfasst andere Quellen der extrazellulären Versauerung, die nicht der Glykolyse oder Atemaktivität zugeschrieben werden, sowie jede verbleibende Glykolyse, die durch 2-DG (nach der 2-DG-Versauerung) nicht vollständig gehemmt wird.
Der mitochondriale Stresstest wird in einem Medium mit Glukose durchgeführt (Abbildung 1C)8. Die ersten Messungen der Sauerstoffverbrauchsrate (OCR) entsprechen der Grundlinie der mitochondrialen Atmung (Basalatmung). Die erste Injektion ist Oligomycin, das die Rückkehr von Protonen durch die ATP-Synthase (Komplex V) hemmt, die ATP-Synthese blockiert und damit die mitochondriale Membran schnell hyperpolarisiert, was ein weiteres Protonenpumpen durch Atemkomplexe verhindert und zu einer Abnahme der OCR führt. Der Vergleich zwischen der Basisatmung und dem durch Addition von Oligomycin angegebenen Wert stellt die ATP-verknüpfte Atmung dar. Die verbleibende Oligomycin-unempfindliche Rate des Sauerstoffverbrauchs wird Protonenleck genannt, das den Fluss von Protonen durch die Lipid-Doppelschicht oder Proteine in der inneren mitochondrialen Membran wie das Adenin-Nukleotid-Translocase9darstellt. Die zweite Injektion ist der Unkoppler 2,4-Dinitrophenol (DNP), ein Ionophor, das einen massiven Eintrag von H+ in die mitochondriale Matrix induziert, was zu einer Depolarisation der mitochondrialen Membran und einer Störung der mitochondrialen ATP-Synthese führt. Zellen reagieren auf die Ableitung der Protonen-Antriebskraft, indem sie die Rate des Elektronentransports und des Sauerstoffverbrauchs auf ein Höchstmaß erhöhen, um das Membranpotenzial (maximale Atemkapazität) wiederzuerlangen. Der Unterschied zwischen der maximalen Atemfrequenz und der Basalatmung ist die freie Atemkapazität der Zelle, die die Menge der Atmung darstellt, die nicht von der Zelle verwendet wird, um ATP im Basalzustand zu erzeugen, sondern möglicherweise als Reaktion auf die Erhöhung der ATP-Nachfrage oder unter Stressbedingungen eingestellt werden könnte8. Die dritte Injektion ist eine Kombination aus Roton und Antimycin A. Diese Injektion stoppt die ETC vollständig und OCR sinkt auf den niedrigsten Stand, wobei der verbleibende Sauerstoffverbrauch nicht mitochondrial ist (verursacht durch NADPH-Oxidasen usw.).
Veränderungen der Stoffwechselwege könnten irgendwie die Funktionsweise von NK-Zellen vorhersagen, da es vorgeschlagen wurde, dass die kontinuierliche Aktivierung von NK-Zellen mit Zytokinen in vitro zu einer Erschöpfung der NK-Zellen durch die Untersuchung verschiedener Stoffwechselwege führen könnte10,11. Die Korrelation zwischen dem metabolischen Status und der Funktion der NK-Zelle ist aus der Sicht der Krebsimmuntherapie sehr wichtig. In diesem Bereich wurde die Aktivierung von NK-Zellen mit Infusion von IL-15, allein oder in Kombination mit monoklonalen therapeutischen Antikörpern getestet, um die Tumorzelltötung12,13,14zu verbessern. Das Wissen um den metabolischen Status der NK-Zellen als Reaktion auf diese Behandlungsstrategien würde einen wertvollen Prädiktor für den Aktivierungsstatus und die Tötungsfunktion der NK-Zellen liefern.
Die Untersuchung von Stoffwechselwegen in anderen myeloischen und lymphoiden Zellen wie Monozyten, T- und B-Zellen wurde beschrieben15 und optimierte Methoden wurden veröffentlicht16. In diesem Protokoll bieten wir eine Methode, die sowohl ein NK-Isolationsprotokoll kombiniert, das eine hohe Anzahl reiner und lebensfähiger NK-Zellen liefert, als auch ein optimiertes Protokoll zur Messung der metabolischen Aktivität mit einem extrazellulären Flussanalysator. Hier zeigen wir, dass dies eine gültige Methode für die Untersuchung von metabolischen Veränderungen in ruhenden und IL-15 aktivierten menschlichen NK-Zellen ist. Für den extrazellulären Flusstest wurden Parameter wie Zellzahl und Wirkstoffkonzentrationen getestet und optimiert. Im Vergleich zu anderen respirometrischen Methoden ist der extrazelluläre Flussanalysator vollautomatisch und in der Lage, in Echtzeit zu testen, mit sehr geringen Zellmengen, bis zu 92 Proben gleichzeitig, und ermöglicht somit Hochdurchsatz-Screenings (mit mehreren Proben und Replikationen) relativ schnell17.
Diese Methode kann von Forschern verwendet werden, die an der Beurteilung der NK-Zellfunktion interessiert sind, indem sie den NK-Zellstoffwechsel untersuchen. Es könnte auch auf Zellen angewendet werden, die durch andere Zytokine, Antikörper oder lösliche Reize aktiviert werden.
In diesem Beitrag haben wir ein Protokoll zur effizienten Isolierung und Kultivierung reiner und lebensfähiger primärer menschlicher NK-Zellen aus peripherem Blut erstellt. Wir haben auch die Bedingungen für die Messung der Metabolischen Aktivität dieser NK-Zellen optimiert, die durch Sauerstoffverbrauch und extrazelluläre Versauerungsrate mit Hilfe eines extrazellulären Flussanalysators beurteilt werden. Im Vergleich zu anderen respirometrischen Methoden ist der extrazelluläre Flussanalysator schnell, erfordert e…
The authors have nothing to disclose.
Die Autoren danken Dr. Michael N. Sack (National Heart, Lung, and Blood Institute) für die Unterstützung und Diskussion. Diese Studie wurde von den Intramural Research Programs der National Institutes of Health, national Cancer Institute und National Heart, Lung, and Blood Institute unterstützt. JT wird durch das Ramon y Cajal-Programm (Grant RYC2018-026050-I) von MICINN (Spanien) unterstützt.
2-Deoxy-D-glucose (2-DG) | MilliporeSigma | D8375-5G | Glycolyisis stress test injector compound |
2,4-Dinotrophenol (2,4-DNP) | MilliporeSigma | D198501 | ETC uncoupler / mitochondrial stress test injector compound |
96 Well Cell Culture Plate/ Round bottom with Lid | Costar | 3799 | NK cell culture |
Antimycin A | MilliporeSigma | A8674 | Complex III inhibitor / glycolysis and mitochondrial stress test injector compound |
BD FACSDIVA Software | BD Biosciences | Flow data acquisition | |
BD LSR Fortessa | BD Biosciences | Flow data acquisition | |
Cell-Tak | Corning | 354240 | Cell adhesive |
CyQUANT cell proliferation assay | ThermoFisher Scientific | C7026 | Cell proliferation Assay for DNA quantification. Contains cell-lysis buffer and CyQUANT GR dye |
EasySep Human CD3 Positive Selection Kit II | Stemcell technologies | 17851 | NK cell isolation from PBMCs |
EasySep Human NK cell Enrichment Kit | Stemcell technologies | 19055 | NK cell isolation from PBMCs |
EasySep Magnet | Stemcell technologies | 18001 | NK cell isolation from PBMCs |
EDTA 0.5 M, pH 8 | Quality Biological | 10128-446 | NK sell separation buffer |
FACS tubes | Falcon-Fisher Scientific | 352235 | Flow cytometry experiment |
Falcon 50 ml Conical tubes | Falcon-Fisher Scientific | 14-432-22 | NK cell separation |
Fetal Calf Serum (FCS) | Gibco | 10437-028 | NK cell separation buffer |
FlowJo Software | BD Biosciences | Flow data analysis | |
Glucose | MilliporeSigma | G8270 | Component of mitochondrial stress test medium. Glycolysis stress test injector compound |
Halt Protease Inhibitor Cocktail | ThermoFisher Scientific | 78429 | Protease inhibitor 100X. Use in RIPA lysis buffer |
Human IL-15 | Peprotech | 200-15-50ug | NK cell stimulation |
Human serum (HS) | Valley Biomedical | 9C0539 | NK cell culture medium supplement |
IMDM | Gibco | 12440053 | NK cell culture medium |
L-Glutamine (200 mM) | ThermoFisher Scientific | 25030-081 | Component of stress test media |
LIVE/DEAD Fixable Aqua Dead Cell Stain Kit | ThermoFisher Scientific | L34965 | Viability dye for flow cytometry staining |
LSM | mpbio | 50494X | PBMCs separation from human blood |
Mouse anti-human CD3 BV711 | BD Biosciences | 563725 | T cell flow cytometry staining |
Mouse anti-human CD56 PE | BD Pharmingen | 555516 | NK flow cytometry staining |
Mouse anti-human NKp46 PE | BD Pharmingen | 557991 | NK flow cytometry staining |
Oligomycin | MilliporeSigma | 75351 | Complex V inhibitor / mitochondrial stress test injector compound |
PBS pH 7.4 | Gibco | 10010-023 | NK cell separation buffer |
Pierce BCA Protein Assay Kit | ThermoFisher Scientific | 23225 | For determination of protein concentration |
RIPA Buffer | Boston BioProducts | BP-115 | Cell lysis |
Rotenone | MilliporeSigma | R8875 | Complex II inhibitor / glycolysis and mitochondrial stress test injector compound |
Seahorse Wave Controller Software | Agilent | Controller for the Seahorse XFe96 Analyzer | |
Seahorse Wave Desktop Software | Agilent | For data analysis | |
Seahorse XF Base Medium | Agilent | 102353-100 | Extracellular Flux assay base medium |
Seahorse XFe96 Analyzer | Agilent | Extracellular Flux Analyzer | |
Seahorse XFe96 FluxPak | Agilent | 102416-100 | Includes 20 XF96 cell culture plates, 18 XFe96 sensor cartridges, loading guides for transferring compounds to the assay cartridge, and 1 bottle of calibrant solution (500 ml). |
Sodium bicarbonate | MilliporeSigma | S5761 | To prepare the Cell-Tak solution |
Sodium pyruvate (100 mM) | ThermoFisher Scientific | 11360-070 | Component of mitochondrial stress test medium |