Here we describe a protocol that utilizes commercially available automated systems to pharmacologically validate the prepulse inhibition (PPI) assay in larval zebrafish.
While there is an abundance of commercial and standardized automated systems and software for performing the prepulse inhibition (PPI) assay in rodents, to the best of our knowledge, all PPI assays performed in the zebrafish have, until now, been done using custom made systems which were only available to individual groups. This has thereby presented challenges, particularly with regard to issues of data reproducibility and standardization. In the present work, we generated a protocol that utilizes commercially available automated systems to pharmacologically validate the PPI assay in larval zebrafish. Consistent with published findings, we were able to replicate the results of apomorphine, haloperidol and ketamine on the PPI response of 6 days post-fertilization zebrafish larvae.
The zebrafish (Danio rerio) larva is a suitable candidate for modelling psychiatric diseases such as schizophrenia (reviewed by Gawel et al.1) because of the numerous advantages it possesses. These include a fully sequenced genome with 70% sequence homology to human orthologues2, existence of forward and reverse genetic tools to manipulate the genome and to identify the contribution of a given gene towards development or disease3, and the presence of major human/rodent neurotransmitters in the zebrafish brain4. There is an availability of several neuro-phenotypic domains in zebrafish, such as anxiety, learning and memory3. Optical transparency and sensitivity to the major classes of neurotropic drugs makes it an ideal candidate of choice for pharmacological manipulations and phenotypic drug screening5,6.
To perform high throughput drug screening, automation and the presence of a robust endophenotype is highly important7. For instance, a variety of automatic recording techniques have been developed for measuring larval zebrafish behavior such as thigmotaxis, startle response, optokinetic response, optomotor response, habituation, prey capture, sleep/wake behavior, locomotor behavior and several others6. While some laboratories develop custom-built systems for automated measurements and analysis of some of these behaviors, there are commercially available imaging and software systems8,9,10,11. Prepulse inhibition (PPI), a form of sensorimotor gating in which the startle response is reduced when a weak non-startling stimulus is presented briefly before the startling stimulus, has been used as an endophenotype for studying schizophrenia in animal models (reviewed by12,13). In addition, acoustic startle response (ASR) and PPI have played useful roles in studying hearing and auditory function in animal models including the zebrafish14,15. The larval zebrafish displays a characteristic C-start in response to an unexpected startling stimulus that is lessened by a weaker stimulus called the prepulse. The C-start has long been described as an escape behavior controlled by distinct neural cell populations and has been thoroughly characterized in the larval zebrafish15,16,17.
There is an abundance of commercial and standardized automated systems and software for performing the PPI assay in rodents18,19,20. However, to the best of our knowledge, all the PPI assays performed in the zebrafish until now have been done using custom made systems which are only available to the individual groups15,16,21,22. This presents challenges for achieving data reproducibility and replicability with regard to standardization23.
Recently, a known vendor in the zebrafish community developed a set-up embedded with a fast camera and PPI generator add-ons to carry out the PPI assay in larval zebrafish24. The camera records at 1000 frames per second which enables the recording of fast acting behaviors such as the C-start, while the PPI generator allows for user-controlled delivery of various acoustic stimuli to evoke a startle response24. Here, we combine the aforementioned system with a commercially available comprehensive software package designed for the automated analysis of complex behaviors11, to generate a protocol for performing PPI response assays in larval zebrafish. We pharmacologically validate the PPI response using 1) apomorphine, a dopamine agonist known to cause deficits in PPI; 2) haloperidol, a dopamine antagonist and antipsychotic known to enhance PPI and 3) ketamine, a NMDA receptor antagonist known to modulate PPI.
It is essential to validate any new behavioral assay system with the aim of improving and refining protocols for neurobehavioral research. In the current investigation, the ability of two commercially available systems and software to induce an acoustic startle response in zebrafish larvae and to detect and quantify previously described pharmacological modulation of such behaviors were assessed.
A number of modifications and troubleshooting were performed to optimize the set-up. The default software for analysis of C-start responses was such that analysis automatically proceeded after the data for every experiment was acquired (22 trials/plate constituted an experiment). This reduced the number of plates that could be run per day, thus reducing the throughput (5 plates per day). To avoid this limitation, there was a need to de-couple the analysis software from the data collection process, which increased the throughput to an average of 10 plates per day. Thus, the decision to turn to an independent analysis software for non-live analysis proved successful and more efficient. To avoid interference from shadows or other debris which introduces noise to the data, it is recommended to fill wells completely with medium, remove all bubbles and avoid food particles or similar which can be mistaken for larvae, thereby generating noise in the data. After calibration of the sound stimuli, the maximum intensity reachable by the amplifier system as captured by the dB meter was 85 dB re, while the initial background noise in the testing chamber was 60 dB re. This resulted in a narrow dB window in which to operate. Hence, it was critical to keep background noise as minimal as possible. To achieve this, parafon acoustics material (see Table of Materials) was used to build an additional layer of insulation around the test-chamber and an extra layer of insulation using a vocal booth bundle (see Table of Materials). With these layers of insulation, the background noise inside the testing chamber was successfully reduced from the initial 60 dB to 45 dB re.
Currently, one advantage of this set-up is that all the components are commercially available and as such, not limited to only a few labs. Individuals with limited knowledge in coding language can use it, as the protocol is rather easy to understand and follow. For example, by using the PPI system, it was possible to deliver pulses and pre-pulses at varying inter-stimulus and inter-trial intervals, as well as capture larval responses to such stimuli. Once these behaviors were captured, they could be classified using the analysis software into responders and non-responders. The responder group was categorized as larvae that displayed a C-start of 30° or more at a latency of <50 ms. In addition, the PPI response is modulated by drugs that target dopaminergic and glutamatergic signaling (reviewed by Geyer and colleagues27). Consistent with previous studies, apomorphine, a non-selective dopamine receptor agonist, reduced the pre-pulse inhibition of startle response in larval zebrafish, while haloperidol a dopamine antagonist enhanced the response. In larval zebrafish, ketamine has been shown to modulate PPI differentially based on the duration of the ISI16. In the aforementioned study, larval PPI was enhanced at 30 ms but suppressed at 500 ms ISI when pre-treated with ketamine. Although this study did not use variable ISI, the observation that ketamine enhanced PPI at an ISI of 100 ms, makes it comparable with the previous study’s data when an ISI of 30 ms was used. The study demonstrated that by combining these commercially available systems, it is possible to perform the PPI assay and to reliably detect pharmacologically induced changes in the zebrafish larval PPI response. A limitation of the system is that the nose-point feature tracked by the analysis software always falls on one of the eyes of the larvae, thereby creating a baseline angle. To overcome this, it is necessary to always determine the baseline bend angle of unstimulated larvae, which was found to be ~30° for larvae used in this study. Thus, forming the basis for the choice of 30° as the threshold of what was considered a positive C-start response in startled larvae. If these points are taken into account, it should be possible to perform the PPI assay in any lab with access to the set-up equipment. This paper did not focus on categorizing the kinematics of startle response into short latency and long latency as reported earlier16, due to the scope of the variability of latency. Hence, only C-start responses <50 ms after stimulus onset were used15.
Strain differences have been reported to influence zebrafish behavior in several assays28,29,30,31 as well as influence hearing sensitivity32. Hence, it is essential to determine the baseline bend angle of each strain tested. Since hearing sensitivities may also be different, it is crucial to determine baseline startle responses, the sound intensity most suited as either prepulse or startle stimulus for each strain and at what duration the stimulus is presented. The ISI is another parameter that should be carefully considered because some drugs can either enhance or reduce PPI based on the interval between the prepulse and startle stimulus onset16. The expectation is that, laboratories interested in studying cognitive function, neuropsychiatric disorders and hearing (auditory function) will find this PPI set-up and protocol useful in screening their pharmacological and/or genetic models. This protocol also provides a basis for high-throughput screening of compound libraries.
The authors have nothing to disclose.
We thank Ana Tavara and João Paulo R. P. Santana for excellent fish care and invaluable help with testing and setting up of the soundproof booths, and Dr. Wietske van der Ent for initial support with setting up the EthoVision software. This study was funded by the Research Council of Norway (ISP, BIOTEK2021/ DigiBrain).
Apomorphine | Sigma Aldrich | A4393 | Dopamine agonist |
dB meter | PCE instruments | PCE-MSM 4 | For measuring stimulus intensity |
DMSO | Sigma Aldrich | D8418 | For dissolving organic solutes |
Dynavox Amplifier | Dynavox | CS-PA1 MK | For delivering acoustic stimuli |
EthoVision XT | Noldus, Netherlands | EthoVision XT, version 14 | Automated tracking software |
GraphPad Prism | GraphPad Software | Version 8 | Statistical analysis software |
Haloperidol | Sigma Aldrich | H1512 | Dopamine antagonist |
Ketamine | Sigma Aldrich | Y0000450 | NMDA receptor antagonist |
parofon acoustics materials | Paroc | 8528308 | Helps reduce background noise in the test cabinet |
t.akustik Vocal Booth Bundle | Thormann, Germany | 458543 | Helps reduce background noise in the test cabinet |
ZebraBox Revo with PPI add-ons | ViewPoint, France | ZebraBox Revo with PPI add-ons | Includes hardware and software |
.