Summary

植物マイクロRNAの検出と定量のためのRNAブロット分析

Published: July 11, 2020
doi:

Summary

この方法は、全RNA抽出物からmiRNAを検出するためのノーザンハイブリダイゼーション技術の使用を実証する。

Abstract

マイクロRNA(miRNA)は、植物および動物の両方における遺伝子発現の調節に関与する内因的に非コード的に発現するクラスであり、〜21nt小さいRNAである。ほとんどのmiRNAは、主要遺伝子を標的とする遺伝子発現の陰性スイッチとして機能します。植物では、一次miRNA(プリミRNA)転写産物はRNAポリメラーゼIIによって生成され、プレミRNAと呼ばれる安定したステムループ構造の様々な長さを形成する。エンドヌクレアーゼ、Dicer-like1は、プレミRNAをmiRNA-miRNA*二重鎖に処理します。miRNA-miRNA*二重鎖からストランドの1つを選択し、アルゴノート1タンパク質またはそのホモログにロードして、標的mRNAの切断を仲介する。miRNAは主要なシグナル伝達分子ですが、それらの検出は、感度の高いノーザンブロット分析ではなく、最適なPCRベースの方法よりも低い方法で行われることが多い。我々は、文字通り、任意の植物組織から、非常に高感度でmiRNAレベルの定量に最適である、シンプルで信頼性の高い、非常に敏感な北部の方法を記述します。さらに、この方法は、miRNAとその前駆体のサイズ、安定性および存在量を確認するために使用することができる。

Introduction

最近の小さな規制RNAの発見, マイクロRNA, それらを理解する研究をリードし、植物や動物でのそれらの役割1.miRNAの長い前駆体はHYL1および特異的なダイサー様タンパク質22、33によって21〜24nt成熟したmiRNAに処理される。22 nt miRNA は、二次 siRNA4を生成することによってカスケードサイレンシングを開始できます。研究は、開発におけるmiRNAおよび二次siRNAの役割を示している, 細胞の運命とストレス応答5,,6.

ノーザンハイブリダイゼーションは、特定のRNA分子を検出するために日常的に採用されている実験的方法である。このメソッドは、合計 RNA7のプールから約 19 -24 nt 長い小さな RNA の検出での使用をカスタマイズします。このデモでは、miRNAの検出と定量にこの手法を用いるための方法を示します。この方法では、放射性同位元素を使用したプローブのラベリングを使用します。したがって、サンプル中のmiRNAレベルは、感度の向上とともに検出することができる。PCRベースの方法とは異なり、この方法は、miRNAのサイズ決定だけでなく、発現の定量を保証します。このプロトコルでは、miRNA検出を改善する重要なステップを示します。miRNAの高分解能信号検出を得るためのブロッティングとハイブリダイゼーションのステップを修正しました。この技術はまた、siRNA、タシ二次RNAおよびスノRNAのような他の内因性小さいRNAを検出するために使用することができる。

Protocol

1. 15%変性ポリアクリルアミドゲルの調製 尿素の4.8 gを加え、40%アクリルアミドの3.75 mLを加え、ビサクリアミド(19:1)溶液と10x TBE pH 8.2の1 mLを無菌50 mLチューブに加えます。 60°Cにセットした水浴を用いて尿素を透明な溶液に溶かします。 オートクレーブされた新しい滅菌水を使用して体積を10 mLにメイクアップし、ゲルミックスを室温まで冷却します。 新鮮な10%(w…

Representative Results

このデモでは、インディカ米の異なる組織におけるmiR397の発現を検出し、定量化した(図1)。miR397は22のnt miRNAおよび保存されたmiRNAである。miR397の発現は、テストされたすべてのサンプルで検出することができます。次世代シーケンシングデータに従って、サンプル1(苗組織)は100万回当たり5読み(rpm)でmiR397を有する。我々は、その信号を快適に検出し、この?…

Discussion

この方法は、あまり豊富なmiRNAを含む小さなRNAの検出および定量化に広く使用することができる。プロトコルは主に、ローディングバッファー内の全RNAを変量するステップ、ゲル電気泳動によるサイズ分離、膜へのRNAの伝達、RNAを膜に架橋し、所望の放射性標識されたオリゴプローブを使用してハイブリダイズするステップを記述する。

ブロッティング実験の重要なステ…

Disclosures

The authors have nothing to disclose.

Acknowledgements

著者らは、ホスト研究所とBRITが提供する放射線ラボへのアクセスを認めている。PVS研究所は、国立生物科学センター、タタ基礎研究所、助成金(BT/PR12394/AGIII/103/891/2014;;BT/IN/スイス/47/JGK/2018-19;BT/PR25767/GET/119/151/2017) インド政府バイオテクノロジー省から。MPは、DBT研究アソシエイトシップ、DBT、インド政府を認めています。

Materials

40% Acrylamide-bisacrylamide solution Sigma A9926
Ammonium persulphate (APS) BioRad 1610700
Blotting paper whatmann blotting paper I 1001-125
Bromophenol blue Sigma B5525-5G
Capillary loading tips BioRad 2239915
Deionized formamide Ambion AM9342
Heating block Eppendorff 5350
Hybond N+nylon membrane GE RPN203B
Hybridization bottle Sigma Z374792-1EA
Hybridization Oven Thermo Scientific 1211V79
N,N,N’,N’-Tetramethylethylenediamine (TEMED) Sigma T7024-25ml
PhosphorImager GE- Typhoon scanner 29187194
PhosphorImager screen and cassette GE healthcare GE28-9564-75
Pipettes Gilson, models: P20 and P10 FA10002M, FA10003M
Plastic pipette Falcon 357550
Polyacrylamide gel apparatus BioRad 1658003EDU
Sephadex G-25 column GE healthcare 27532501
Speed Vac Concentrator Thermo Scientific 20-548-130
Spinwin Tarsons 1010
T4 Polynucleotide Kinase (PNK) NEB M0201S
Transblot apparatus BioRad 1703946
ULTRAHyb hybridization buffer Ambion AM8670
Urea Fischer Scientific 15985
UV-crosslinker UVP CL-1000L
Vortex Tarsons 3020
Water bath NEOLAB D-8810
Xylene cyanol Sigma X4126-10G

References

  1. Baulcombe, D. RNA silencing in plants. Nature. 431, 356-363 (2004).
  2. Anushree, N., Shivaprasad, P. V. Regulation of Plant miRNA Biogenesis. Proceedings of the Indian National Science Academy. 95, (2017).
  3. Narjala, A., Nair, A., Tirumalai, V., Hari Sundar, G. V., Shivaprasad, P. V. A conserved sequence signature is essential for robust plant miRNA biogenesis. Nucleic Acids Research. , (2020).
  4. Chen, H. M., et al. 22-Nucleotide RNAs trigger secondary siRNA biogenesis in plants. Proceedings of the National Academy of Sciences of the United States of America. 107, 15269-15274 (2010).
  5. Shivaprasad, P. V., et al. A microRNA superfamily regulates nucleotide binding site-leucine-rich repeats and other mRNAs. Plant Cell. 24, 859-874 (2012).
  6. Shivaprasad, P. V., Dunn, R. M., Santos, B. A., Bassett, A., Baulcombe, D. C. Extraordinary transgressive phenotypes of hybrid tomato are influenced by epigenetics and small silencing RNAs. The EMBO Journal. 31, 257-266 (2012).
  7. Akbergenov, R., et al. Molecular characterization of geminivirus-derived small RNAs in different plant species. Nucleic Acids Research. 34, 462-471 (2006).
  8. Tirumalai, V., Swetha, C., Nair, A., Pandit, A., Shivaprasad, P. V. miR828 and miR858 regulate VvMYB114 to promote anthocyanin and flavonol accumulation in grapes. Journal of Experimental Botany. , (2019).
  9. Li, C., Zamore, P. D. Analysis of Small RNAs by Northern Hybridization. Cold Spring Harbor Protocols. (8), (2018).
  10. Swetha, C., et al. Major domestication-related phenotypes in indica rice are due to loss of miRNA-mediated laccase silencing. The Plant Cell. , (2018).

Play Video

Cite This Article
Tirumalai, V., Prasad, M., Shivaprasad, P. V. RNA Blot Analysis for the Detection and Quantification of Plant MicroRNAs. J. Vis. Exp. (161), e61394, doi:10.3791/61394 (2020).

View Video