Wir präsentieren ein Protokoll zur Herstellung von spin- und richtungsmultiplexed sichtbaren Metahologrammen und führen dann ein optisches Experiment durch, um deren Funktion zu überprüfen. Diese Metahologramme können leicht codierte Informationen visualisieren, so dass sie für projektive volumetrische Anzeige und Informationsverschlüsselung verwendet werden können.
Die optische Holographietechnik, die von Metaoberflächen realisiert wird, hat sich als neuartiger Ansatz für die projektive volumetrische Anzeige und Informationsverschlüsselungsanzeige in Form von ultradünnen und fast flachen optischen Geräten herausgebildet. Im Vergleich zur herkömmlichen holographischen Technik mit räumlichen Lichtmodulatoren hat das Metahologramm zahlreiche Vorteile wie Miniaturisierung optischer Einrichtung, höhere Bildauflösung und größeres Sichtbarkeitsfeld für holographische Bilder. Hierwird wird ein Protokoll zur Herstellung und optischen Charakterisierung optischer Metahologramme gemeldet, die empfindlich auf die Drehung und Richtung des einfallenden Lichts reagieren. Die Metaoberflächen bestehen aus hydriertem amorphem Silizium (a-Si:H), das einen großen Brechungsindex und einen kleinen Aussterbekoeffizienten im gesamten sichtbaren Bereich aufweist, was zu einer hohen Transmissions- und Beugungseffizienz führt. Das Gerät erzeugt verschiedene holographische Bilder, wenn die Drehung oder Richtung des einfallenden Lichts geschaltet wird. Daher können sie mehrere Arten visueller Informationen gleichzeitig kodieren. Das Fertigungsprotokoll besteht aus Filmabscheidung, Elektronenstrahlschrift und anschließender Ätzung. Das gefertigte Gerät kann durch ein maßgeschneidertes optisches Setup charakterisiert werden, das aus einem Laser, einem linearen Polarisator, einer Viertel-Wellenplatte, einer Linse und einem ladungsgekoppelten Gerät (CCD) besteht.
Optische Metaoberflächen, die aus Subwellenlängen-Nanostrukturen bestehen, haben viele interessante optische Phänomene ermöglicht, einschließlich optischer Tarnung1, negative Brechung2, perfekte Lichtabsorption3, Farbfilterung4, holographische Bildprojektion5und Strahlmanipulation6,7,8. Optische Metaflächen mit entsprechend entwickelten Streuern können das Spektrum, die Wellenfront und die Polarisation des Lichts modulieren. Frühe optische Metaoberflächen wurden aufgrund ihrer hohen Reflektivität und der einfachen Nanofertigung hauptsächlich mit Edelmetallen (z.B. Au, Ag) hergestellt, haben aber hohe Ohmscheverluste, so dass die Metaoberflächen bei kurzen sichtbaren Wellenlängen einen geringen Wirkungsgrad aufweisen.
Die Entwicklung von Nanofabrikationstechniken für dielektrische Materialien mit geringen Verlusten bei sichtbarem Licht (z.B. TiO29, GaN10und a-Si:H11) hat die Realisierung hocheffizienter flacher optischer Geräte mit optischen Metaflächen ermöglicht. Diese Geräte haben Anwendungen in Optik und Technik. Eine faszinierende Anwendung ist die optische Holographie für projektive volumetrische Anzeige und Informationsverschlüsselung. Im Vergleich zu herkömmlichen Hologrammen, die räumliche Lichtmodulatoren verwenden, hat das Metahologramm zahlreiche Vorteile wie die Miniaturisierung optischer Einstellungen, eine höhere Auflösung holographischer Bilder und ein größeres Sichtbarkeitsfeld.
Kürzlich wurde die Codierung mehrerer holographischer Informationen in einem einschichtigen Metahologramm-Gerät erreicht. Beispiele sind Metahologramme, die in Spin12,13, Orbitalwinkelimpuls14, einfallender Lichtwinkel15und Richtung16. Diese Bemühungen haben das kritische Manko von Metahologrammen überwunden, was ein Mangel an Gestaltungsfreiheit in einem einzigen Gerät ist. Die meisten konventionellen Metahologramme konnten nur einzelne codierte holographische Bilder erzeugen, aber Multiplex-Geräte können mehrere holographische Bilder in Echtzeit kodieren. Daher ist das Multiplex-Metahologramm eine entscheidende Lösungsplattform für echte holographische Videoanzeige oder multifunktionale Anti-Fälschungs-Hologramme.
Hier werden Protokolle zur Herstellung von spin- und richtungsmultiplexierten alldielektrischen sichtbaren Metahologrammen gemeldet, um sie dann optisch zu charakterisieren13,16. Um mehrere visuelle Informationen in einem einzigen Metaoberflächengerät zu kodieren, werden Metahologramme entworfen, die zwei verschiedene holographische Bilder zeigen, wenn die Drehung oder Richtung des einfallenden Lichts geändert wird. Um hocheffiziente holographische Bilder in einer mit der CMOS-Technologie vergleichbaren Weise herzustellen, wird a-Si:H für die Metaoberflächen verwendet und zwei Magnetresonanzen und in ihnen induzierte Antiferromagnetresonanzen genutzt. Das Fertigungsprotokoll besteht aus Filmabscheidung, Elektronenstrahlschrift und Ätzen. Das gefertigte Gerät zeichnet sich durch ein maßgeschneidertes optisches Setup aus einem Laser, einem linearen Polarisator, einer Viertel-Wellenplatte, einer Linse und einem ladungsgekoppelten Gerät (CCD) aus.
Die a-Si:H Metaoberflächen wurden in drei Hauptschritten hergestellt: a-Si:H Dünnschichtabscheidung mit PECVD, präzise Rine und Trockenätzung. Unter diesen Schritten ist der EBL-Schreibprozess der wichtigste. Erstens ist die Musterdichte auf Metaoberflächen recht hoch, so dass der Prozess eine präzise Kontrolle über die Elektronendosis (Energie) und Scanparameter wie die Anzahl der Punkte pro Flächeneinheit erfordert. Auch der Entwicklungszustand sollte sorgfältig gewählt werden. Die Dichte des Musters ist sehr…
The authors have nothing to disclose.
Diese Arbeit wurde finanziell durch die Stipendien der National Research Foundation (NRF) (NRF-2019R1A2C3003129, CAMM-2019M3A6B3030637, NRF-2019R1A5A8080290) unterstützt, die vom Ministerium für Wissenschaft und IKT der koreanischen Regierung finanziert werden. I.K. würdigt das vom Bildungsministerium der koreanischen Regierung finanzierte NRF Global Ph.D. Stipendium (NRF-2016H1A2A1906519).
Aceton | J.T. Baker | 925402 | |
Beam splitter | Thorlabs | CCM1-BS013/M | |
Chromium etchant | KMG | Cr-7 | |
Chromium evaporation source | Kurt J. Lesker | EVMCR35D | |
Clamp | Thorlabs | CP175 | |
Conducting polymer | Showa denko | E-spacer | |
Diode laser | Thorlabs | CPS635 | |
E-beam evaporation system | Korea Vacuum Tech | KVE-E4000 | |
E-beam resist | Microchem | 495 PMMA A2 | |
Electron beam lithography | Elionix | ELS-7800 | |
Half-wave plate | Thorlabs | AHWP05M-600 | |
Inductively-coupled plasma reactive ion etching | DMS | – | |
Iris | Thorlabs | SM1D12 | |
Isopropyl alcohol | J.T. Baker | 909502 | |
Kinematic mirror mount | Thorlabs | KM100/M | |
Lens | Thorlabs | LB1630 | |
Lens Mount | Thorlabs | LMR2/M | |
Linear polarizer | Thorlabs | GTH5-A | |
Mirror | Thorlabs | PF10-03-G01 | |
Neutral density filter | Thorlabs | NDC-50C-4 | |
Plasma enhanced chemical vapor deposition | BMR Technology | HiDep-SC | |
Post | Thorlabs | TR75/M | |
Post holder | Thorlabs | PH75E/M | |
Quarter-wave plate | Thorlabs | AQWP10M-580 | |
Resist developer | Microchem | MIBK:IPA=1:3 | |
Rotational mount | Thorlabs | RSP1/M | |
Scanning electron microscopy | Hitachi | Regulus8100 | |
XY translation mount | Thorlabs | XYF1/M | |
1-inch adapter | Thorlabs | AD11F | |
1-inch lens mount | Thorlabs | CP02/M |