Die Blut-Hirn-Schranke (BBB) kann vorübergehend mit mikrobubble-vermitteltem fokussiertem Ultraschall (FUS) gestört werden. Hier beschreiben wir ein Schritt-für-Schritt-Protokoll für bBB-Hochdurchsatzöffnung envivo mit einem modularen FUS-System, das für Nicht-Ultraschall-Experten zugänglich ist.
Die Blut-Hirn-Schranke (BBB) war eine große Hürde für die Behandlung verschiedener Hirnerkrankungen. Endothelzellen, die durch enge Knoten verbunden sind, bilden eine physiologische Barriere, die verhindert, dass große Moleküle (>500 Da) in das Gehirngewebe gelangen. Mikrobubble-vermittelter fokussierter Ultraschall (FUS) kann verwendet werden, um eine transiente lokale BBB-Öffnung zu induzieren, so dass größere Medikamente in das Blutparenchym gelangen.
Zusätzlich zu groß angelegten klinischen Geräten für die klinische Übersetzung erfordert die präklinische Forschung zur Beurteilung von Therapiereaktionen von Wirkstoffkandidaten spezielle Kleintier-Ultraschall-Setups für eine gezielte BBB-Öffnung. Vorzugsweise ermöglichen diese Systeme Hochdurchsatz-Workflows sowohl mit hoher räumlicher Präzision als auch bei integrierter Kavitationsüberwachung, während sie sowohl bei den Anfangsinvestitionen als auch bei den betriebskostenden Kosten kostengünstig sind.
Hier präsentieren wir ein biolumineszierendes und röntgengeführtes stereotaktisches Kleintier-FUS-System, das auf handelsüblichen Komponenten basiert und die oben genannten Anforderungen erfüllt. Ein besonderer Schwerpunkt wurde auf einen hohen Automatisierungsgrad gelegt, der die Herausforderungen erleichtert, die typischerweise in hochvolumigen präklinischen Arzneimittelbewertungsstudien auftreten. Beispiele für diese Herausforderungen sind die Notwendigkeit einer Standardisierung, um die Reproduzierbarkeit der Daten sicherzustellen, die gruppeninterne Variabilität zu reduzieren, die Stichprobengröße zu reduzieren und damit ethische Nonden zu erfüllen und unnötige Arbeitsbelastung zu verringern. Das vorgeschlagene BBB-System wurde im Rahmen der BBB-Eröffnung erleichterter Arzneimittelabgabestudien an patientenabgeleiteten Xenograft-Modellen von Glioblastom multiforme und diffusem Mittelliniengliom validiert.
Die Blut – Hirn-Schranke (BBB) ist ein großes Hindernis für die Verabreichung von Medikamenten in das Gehirn Parenchym. Die meisten therapeutischen Medikamente, die entwickelt wurden, kreuzen die BBB aufgrund ihrer physikalisch-chemischen Parameter (z. B. Lipophilie, Molekulargewicht, Wasserstoffbindungsakzeptoren und Spender) nicht oder werden aufgrund ihrer Affinität zu Efflux-Transportern im Gehirn nicht beibehalten1,2. Die kleine Gruppe von Medikamenten, die die BBB überqueren können, sind in der Regel kleine lipophile Moleküle, die nur bei einer begrenzten Anzahl von Gehirnerkrankungen wirksam sind1,2. Infolgedessen sind für die meisten Hirnerkrankungen die möglichkeiten der pharmakologischen Behandlung begrenzt und neue Strategien zur Medikamentenabgabe erforderlich3,4.
Therapeutischer Ultraschall ist eine neue Technik, die für verschiedene neurologische Anwendungen wie BBB Disruption (BBBD), Neuromodulation und Ablation4,5,6,7verwendet werden kann. Um eine BBB-Öffnung mit einem extrakorporalen Ultraschall-Emitter durch das Schädel zu erreichen, wird fokussierter Ultraschall (FUS) mit Mikroblasen kombiniert. Mikrobubble-vermittelte FUS führt zu erhöhter Bioverfügbarkeit von Medikamenten im Gehirn Parenchym5,8,9. In Gegenwart von Schallwellen beginnen Mikroblasen zu oszillieren, die Transzytose und Störungen der engen Kreuzungen zwischen den Endothelzellen des BBB zu stören, was den parazellulären Transport größerer Moleküleermöglicht 10. Frühere Studien bestätigten den Zusammenhang zwischen der Intensität der akustischen Emission und den biologischen Auswirkungen auf die BBB-Öffnung11,12,13,14. FUS in Kombination mit Mikroblasen wurde bereits in klinischen Studien zur Behandlung von Glioblastom mit Temozolomid oder liposomalem Doxorubicin als Chemotherapeutikum oder zur Therapie der Alzheimer-Krankheit und der amyotrophen Lateralsklerose5,9,15,16eingesetzt.
Da ultraschallvermittelte BBB-Eröffnung zu völlig neuen Möglichkeiten der Pharmakotherapie führt, ist eine präklinische Forschung für die klinische Translation erforderlich, um die Therapiereaktion ausgewählter Arzneimittelkandidaten zu bewerten. Dies erfordert in der Regel einen Workflow mit hohem Durchsatz mit hoher räumlicher Präzision und vorzugsweise einer integrierten Kavitationsdetektion zur Überwachung der gezielten BBB-Öffnung mit hoher Reproduzierbarkeit. Wenn möglich, müssen diese Systeme sowohl bei den Anfangsinvestitionen als auch bei den laufenden Kosten kosteneffektiv sein, um je nach Studiengröße skalierbar zu sein. Die meisten präklinischen FUS-Systeme werden mit MRT zur Bildführung und Behandlungsplanung15,17,18,19kombiniert. Obwohl MRT detaillierte Informationen über die Tumoranatomie und das Volumen liefert, ist es eine teure Technik, die in der Regel von ausgebildeten/qualifizierten Bedienern durchgeführt wird. Darüber hinaus ist eine hochauflösende MRT für Forscher in präklinischen Einrichtungen möglicherweise nicht immer verfügbar und erfordert lange Scanzeiten pro Tier, was sie weniger für pharmakologische Studien mit hohem Durchsatz geeignet macht. Bemerkenswert ist, dass für die präklinische Forschung auf dem Gebiet der Neuroonkologie, insbesondere infiltrative Tumormodelle, die Möglichkeit, den Tumor zu visualisieren und zu zielen, für den Behandlungserfolg20von entscheidender Bedeutung ist. Derzeit wird diese Anforderung nur durch MRT oder durch mit einem Photoprotein transduzierte Tumore erfüllt, die eine Visualisierung mit Biolumineszenzbildgebung (BLI) in Kombination mit der Verabreichung des Photoproteinsubstrats ermöglichen.
MRT-geführte FUS-Systeme verwenden oft ein Wasserbad, um eine Ultraschallwellenausbreitung für transkranielle Anwendungen zu gewährleisten, wobei der Kopf des Tieres teilweise im Wasser versunken ist, die sogenannten “Bottom-up”-Systeme15,17,18. Während diese Designs in kleineren Tierstudien im Allgemeinen gut funktionieren, sind sie ein Kompromiss zwischen Tiervorbereitungszeiten, Portabilität und realistisch zu wartenden Hygienestandards während des Einsatzes. Als Alternative zur MRT umfassen andere Leitmethoden für die stereotaktische Navigation die Verwendung eines anatomischen Nagetieratlas21,22,23, Laserpointer unterstützte Visuelle Sichtung24, lochgestütztes mechanisches Scangerät25oder BLI26. Die meisten dieser Designs sind “Top-down”-Systeme, bei denen der Messumformer auf dem Kopf des Tieres platziert wird, wobei das Tier in einer natürlichen Position ist. Der Workflow ”top-down” besteht entweder aus einem Wasserbad22,25,26 oder einem wassergefüllten Kegel21,24. Der Vorteil eines Messumformers in einem geschlossenen Kegel ist die kompaktere Grundfläche, kürzere Rüstzeiten und geradlinige Dekontaminationsmöglichkeiten, die den gesamten Arbeitsablauf vereinfachen.
Die Wechselwirkung des akustischen Feldes mit den Mikroblasen ist druckabhängig und reicht von Schwingungen mit geringer Amplitude (als stabile Kavitation bezeichnet) bis zum transienten Blasenkollaps (bezeichnet als Inertialkavitation)27,28. Es besteht ein fester Konsens, dass Ultraschall-BBBD einen akustischen Druck weit über der stabilen Kavitationsschwelle benötigt, um eine erfolgreiche BBBD zu erreichen, aber unterhalb der Trägheitskavitationsschwelle, die in der Regel mit vaskulären/neuronalen Schäden verbunden ist29. Die häufigste Form der Überwachung und Steuerung ist die Analyse des (rücken-)streunenden akustischen Signals mittels passiver Kavitationserkennung (PCD), wie von McDannold et al.12vorgeschlagen. PCD stützt sich auf die Analyse der Fourier-Spektren von Mikroblasen-Emissionssignalen, bei denen die Stärke und das Aussehen stabiler Kavitationsmerkmale (Harmonika, Subharmonik und Ultraharmonik) und Trägialkavitationsmarker (Breitbandantwort) in Echtzeit gemessen werden können.
Eine “One Size fits all” PCD-Analyse zur präzisen Druckregelung ist aufgrund der Polydispersität der Mikroblasenformulierung (die Schwingungsamplitude hängt stark vom Blasendurchmesser ab), den Unterschieden in den Blasenschaleneigenschaften zwischen den Marken und der akustischen Schwingung, die stark von Frequenz und Druck30,31,32abhängt, kompliziert. Als Konsequenz wurden viele verschiedene PCD-Detektionsprotokolle vorgeschlagen, die an bestimmte Kombinationen all dieser Parameter angepasst wurden und in verschiedenen Anwendungsszenarien (von In-vitro-Experimenten über Kleintierprotokolle bis hin zu PCD für den klinischen Einsatz) für eine robuste Kavitationsdetektion und sogar für die rückwirkende Rückkopplungskontrolle des Drucks11,14,30,31,32,33,34,35. Das im Rahmen dieser Studie verwendete PCD-Protokoll wird direkt von McDannold et al.12 abgeleitet und überwacht die harmonische Emission auf das Vorhandensein stabiler Kavitation und Breitbandrauschen zur Trägzkavitationserkennung.
Wir haben ein bildgesteuertes Neuronavigations-FUS-System zur vorübergehenden Öffnung des BBB entwickelt, um die Medikamentenabgabe in das Hirnparenchym zu erhöhen. Das System basiert auf handelsüblichen Komponenten und kann je nach den verfügbaren bildgebenden Verfahren in der Tieranlage einfach an verschiedene bildgebende Modalitäten angepasst werden. Da wir einen Workflow mit hohem Durchsatz benötigen, haben wir uns für die Bildführung und Behandlungsplanung für Röntgen und BLI entschieden. Tumorzellen, die mit einem Photoprotein (z.B. Luziferase) transduziert werden, eignen sich für die BLI-Bildgebung20. Nach Verabreichung des Photoproteinsubstrats können Tumorzellen in vivo und Tumorwachstum und -ort bestimmt werden20,36. BLI ist eine kostengünstige bildgebende Modalität, es ermöglicht es, das Tumorwachstum im Laufe der Zeit zu verfolgen, es hat schnelle Scanzeiten und es korreliert gut mit Tumorwachstum gemessen mit MRT36,37. Wir haben uns entschieden, das Wasserbad durch einen mit Wasser gefüllten Kegel zu ersetzen, der am Messumformer befestigt ist, um Flexibilität zu ermöglichen, die Plattform, auf der das Nagetier montiert ist, frei zu bewegen8,24. Das Design basiert auf einer abnehmbaren Plattform, die mit der Integration von (I) kleintierischen Stereotaktik-Plattformen (II) mit Röntgen- und optischer Bildkompatibilität (III), schnell abnehmbarer Anästhesiemaske und (IV) integriertem temperaturregulierten Tierheizungssystem ausgestattet ist. Nach der ersten Induktion der Anästhesie wird das Tier in einer genauen Position auf der Plattform montiert, wo es während des gesamten Eingriffs verbleibt. Folglich übergibt die gesamte Plattform alle Stationen des Workflows der gesamten Intervention, wobei eine genaue und reproduzierbare Positionierung und anhaltende Anästhesie beibehalten werden. Die Steuerungssoftware ermöglicht die automatische Erkennung der Treuhandmarker und registriert automatisch alle Arten von Bildern und Bildmodalitäten (z.B. Micro-CT, Röntgen- und Fluoreszenzbildgebung) in den Referenzrahmen der stereotaktischen Plattform. Mit Hilfe eines automatischen Kalibrierverfahrens ist die Brennweite des Ultraschallwandlers genau bekannt, was die automatische Verschmelzung von interventioneller Planung, akustischer Abgabe und Nachbearbeitungs-Bildgebungsanalyse ermöglicht. Wie in Abbildung 1 und Abbildung 2dargestellt, bietet dieses Setup ein hohes Maß an Flexibilität bei der Gestaltung spezieller experimenteller Arbeitsabläufe und ermöglicht einen überläßten Umgang mit dem Tier an verschiedenen Stationen, was wiederum Experimente mit hohem Durchsatz ermöglicht. Wir haben diese Technik für die erfolgreiche Medikamentenabgabe in Maus-Xenografts von hochwertigem Gliom wie diffusem Mittelliniengliom verwendet.
In dieser Studie haben wir ein kostengünstiges bildgesteuertes FUS-System für vorübergehende BBB-Störungen zur erhöhten Medikamentenabgabe in das Gehirnparenchym entwickelt. Das System wurde größtenteils mit handelsüblichen Komponenten und in Verbindung mit Röntgen und BLI gebaut. Die Modularität des vorgeschlagenen Designs ermöglicht den Einsatz mehrerer bildgebender Verfahren für die Planung und Bewertung in Workflows mit hohem Durchsatz. Das System kann mit umfassenderen hochauflösenden 3D-Bildgebungsmoda…
The authors have nothing to disclose.
Dieses Projekt wurde vom KWF-STW (Drug Delivery by Sonoporation in Childhood Diffuse Intrinsic Pontine Glioma and High-grade Glioma) finanziert. Wir danken Ilja Skachkow und Charles Mougenot für ihren Beitrag zur Entwicklung des Systems.
1 mL luer-lock syringe | Becton Dickinson | 309628 | Plastipak |
19 G needle | Terumo Agani | 8AN1938R1 | |
23 G needle | Terumo Agani | 8AN2316R1 | |
3M Transpore surgical tape | Science applied to life | 7000032707 | or similar |
Arbitrary waveform generator | Siglent | n.a. | SDG1025, 25 MHz, 125 Msa/s |
Automated stereotact | in-house built | n.a. | Stereotact with all elements were in-house built |
Bruker In-Vivo Xtreme | Bruker | n.a. | Includes software |
Buffered NaCl solution | B. Braun Melsungen AG | 220/12257974/110 | |
Buprenorfine hydrochloride | Indivior UK limitd | n.a. | 0.324 mg |
Cage enrichment: paper-pulp smart home | Bio services | n.a. | |
Carbon filter | Bickford | NC0111395 | Omnicon f/air |
Ceramic spoon | n.a | n.a. | |
Cotton swabs | n.a. | n.a. | |
D-luciferin, potassium salt | Gold Biotechnology | LUCK-1 | |
Ethanol | VUmc pharmacy | n.a. | 70% |
Evans Blue | Sigma Aldrich | E2129 | |
Fresenius NaCl 0.9% | Fresenius Kabi | n.a. | NaCl 0.9 %, 1000 mL |
Histoacryl | Braun Surgical | n.a. | Histoacryl 0.5 mL |
Hydrophone | Precision Acoustics | n.a. | |
Insulin syringe | Becton Dickinson | 324825/324826 | 0.5 mL and 0.3 mL |
Isoflurane | TEVA Pharmachemie BV | 8711218013196 | 250 mL |
Ketamine | Alfasan | n.a. | 10 %, 10 mL |
Mouse food: Teklad global 18% protein rodent diet | Envigo | 2918-11416M | |
Neoflon catheter | Becton Dickinson | 391349 | 26 GA 0.6 x 19 mm |
Oscilloscope | Keysight technologies | n.a. | InfiniiVision DSOX024A |
Plastic tubes | Greiner bio-one | 210261 | 50 mL |
Power amplifier | Electronics & Innovation Ltd | 210L | Model 210L |
Preamplifier DC Coupler | Precision Acoustics | n.. | Serial number: DCPS94 |
Scissors | Sigma Aldrich | S3146-1EA | or similar |
Sedazine | AST Farma | n.a. | 2% |
SonoVue microbubbles | Bracco | n.a. | 8 µl/ml |
Sterile water | Fresenius Kabi | n.a. | 1000 mL |
Syringe | n.a. | n.a. | various syringes can be used |
Temgesic | Indivior UK limitd | n.a. | 0.3 mg/ml |
Transducer | Precision Acoustics | n.a. | 1 MHz |
Tweezers | Sigma Aldrich | F4142-1EA | or similar |
Ultrasound gel | Parker Laboratories Inc. | 01-02 | Aquasonic 100 |
Vidisic gel | Bausch + Lomb | n.a. | 10 g |