Представлен протокол металлического химического импринтинга 3D микромасштабных объектов с точностью формы менее 20 нм в твердые и пористые кремниевые пластины.
Электрохимический импринтинг с помощью металла (Mac-Imprint) представляет собой комбинацию металлического химического травления (MACE) и наноимпринтной литографии, которая способна непосредственно моделировать 3D-микро- и наноразмерные объекты в полупроводниках монокристаллической группы IV (например, Si) и III-V (например, GaAs) без необходимости жертвенных шаблонов и литографических шагов. Во время этого процесса многоразовый штамп, покрытый катализатором благородного металла, вводится в контакт с кремниевой пластиной в присутствии смеси фтористоводородной кислоты (HF) и перекиси водорода (H2O2), что приводит к селективному травлению Si на границе контакта металл-полупроводник. В этом протоколе мы обсуждаем методы подготовки штампа и подложки, применяемые в двух конфигурациях Mac-Imprint: (1) Пористый Si Mac-Imprint с твердым катализатором; и (2) Твердый Si Mac-Imprint с пористым катализатором. Этот процесс отличается высокой пропускной способностью и способен к параллельному моделированию в сантиметровом масштабе с разрешением менее 20 нм. Он также обеспечивает низкую плотность дефектов и рисунок большой площади за одну операцию и обходит необходимость сухого травления, такого как глубокое реактивное ионное травление (DRIE).
Трехмерное микро- и наноразмерное моделирование и текстурирование полупроводников позволяет применять их в различных областях, таких как оптоэлектроника1,2, фотоника3, антибликовые поверхности4, супергидрофобные и самоочищающиеся поверхности5,6 и другие. Прототипирование и массовое получение 3D и иерархических узоров успешно выполнено для полимерных пленок методом мягкой литографии и наноимпринтовой литографии с разрешением ниже 20 нм. Однако перенос таких 3D-полимерных рисунков в Si требует селективности травления маски во время реакционноспособного ионного травления и, таким образом, ограничивает соотношение сторон и вызывает искажения формы и шероховатость поверхности из-за эффектов гребешка7,8.
Новый метод под названием Mac-Imprint был достигнут для параллельного и прямого рисунка пористых 9 и твердых Кремниевых пластин10,11, а также твердых пластин GaAs12,13,14. Mac-Imprint – это контактный метод мокрого травления, который требует контакта между подложкой и благородным штампом с металлическим покрытием, обладающим 3D-характеристиками в присутствии травильного раствора (ES), состоящего из HF и окислителя (например, H2O2 в случае Si Mac-Imprint). Во время травления одновременно происходят две реакции15,16: катодная реакция (т.е. восстановление H2O2 в благородном металле, во время которого образуются положительные носители заряда [отверстия] и впоследствии вводятся в Si17) и анодная реакция (т.е. растворение Si, во время которого отверстия расходуются). После достаточного времени контакта 3D-элементы штампа выгравированы на кремниевой пластине. Mac-Imprint имеет многочисленные преимущества перед обычными литографическими методами, такими как высокая пропускная способность, совместимость с платформами roll-to-plate и roll-to-roll, аморфные, моно- и поликристаллические Полупроводники Si и III-V. Марки Mac-Imprint могут быть повторно использованы несколько раз. Кроме того, метод может обеспечить разрешение травления ниже 20 нм, которое совместимо с современными методами прямого письма.
Ключом к достижению высокоточного импринтинга является диффузионный путь к фронту травления (т.е. контактный интерфейс между катализатором и подложкой). Работа Azeredo et al.9 впервые продемонстрировала, что диффузия ES обеспечивается через пористую сеть Si. Torralba et al.18 сообщили, что для реализации твердого Si Mac-Imprint диффузия ES обеспечивается через пористый катализатор. Bastide et al.19 и Sharstniou et al.20 дополнительно исследовали влияние пористости катализатора на диффузию ES. Таким образом, концепция Mac-Imprint была протестирована в трех конфигурациях с различными путями диффузии.
В первой конфигурации катализатор и подложка являются твердыми, что не обеспечивает начального пути диффузии. Отсутствие диффузии реагента приводит к вторичной реакции при импринтинге, которая образует слой пористого Si на подложке по краю границы раздела катализатор-Si. Впоследствии реагенты истощаются, и реакция останавливается, что приводит к отсутствию различимой точности передачи рисунка между штампом и подложкой. Во второй и третьей конфигурациях пути диффузии включаются через пористые сети, введенные либо в подложку (т.е. пористую Si), либо в катализатор (т.е. пористое золото), и достигается высокая точность переноса рисунка. Таким образом, массовый перенос через пористые материалы играет решающую роль в обеспечении диффузии реагентов и продуктов реакции в контактную границу раздела и от нее9,18,19,20. Схема всех трех конфигураций показана на рисунке 1.
Рисунок 1: Схемы конфигураций Mac-Imprint. На этом рисунке подчеркивается роль пористых материалов в обеспечении диффузии реагирующих веществ через подложку (т.е. случай II: пористый Si) или в штамп (т.е. случай III: тонкая пленка катализатора из пористого золота). Пожалуйста, нажмите здесь, чтобы просмотреть увеличенную версию этого рисунка.
В этой статье подробно обсуждается процесс Mac-Imprint, включая подготовку штампов и предварительную обработку подложки, а также сам Mac-Imprint. Раздел предварительной обработки подложки в рамках протокола включает очистку Кремниевой пластины и Рисунок Кремниевой пластины с сухим травлением и анодированием подложки (опционально). Далее раздел подготовки штампов подразделяется на несколько процедур: 1) PDMS реплика формования si master mold; 2) УФ-наноимпринтирование слоя фоторезиста с целью переноса pdms-рисунка; и 3) осаждение каталитического слоя с помощью магнетронного напыления с последующим деаплойлингом (факультативно). Наконец, в разделе Mac-Imprint представлена настройка Mac-Imprint вместе с результатами Mac-Imprint (т.е. иерархическим 3D-шаблоном поверхности Si).
Штампы Mac-Imprint и предварительно обработанные si-чипы (p-тип, [100] ориентация, 1-10 Ом∙см) были подготовлены в соответствии с разделами 1 и 2 протокола соответственно. Mac-импринт преприставленного Si-чипа со штампами, содержащими 3D-иерархические узоры, выполнялся в соответствии с разделом 3 прото…
The authors have nothing to disclose.
Мы благодарим д-ра Кенга Хсу (Университет Луисвилля) за понимание этой работы; Лаборатория Фредерика Зайца Университета штата Иллинойс и, в память о нем, сотрудник Скотт Макларен; Центр Лерой Айринг при Университете штата Аризона по науке о твердых телах; и Научный фонд Аризоны в рамках премии Bis grove Scholars Award.
Acetone, >99.5%, ACS reagent | Sigma-Aldrich | 67-64-1 | CAUTION, chemical |
Ammonium fluoride, >98%, ACS grade | Sigma-Aldrich | 12125-01-8 | CAUTION, hazardous |
Ammonium hydroxide solution, 28-30%, ACS reagent | Sigma-Aldrich | 1336-21-6 | CAUTION, hazardous |
AZ 400K developer | Microchemicals | AZ 400K | CAUTION, chemical |
BenchMark 800 Etch | Axic | BenchMark 800 | Reactive ion etching |
Chromium target, 2" x 0.125", 99.95% purity | ACI alloys | ADM0913 | Magnetron sputter chromium target |
CTF 12 | Carbolite Gero | C12075-700-208SN | Tube furnace |
Desiccator | Fisher scientific Chemglass life sciences | CG122611 | Desiccator |
F6T5/BLB | Eiko | F6T5/BLB 6W | UV bulb |
Gold target, 2" x 0.125", 99.99% purity | ACI alloys | N/A | Magnetron sputter gold target |
Hotplate KW-4AH | Chemat tecnologie | KW-4AH | Leveled hotplate with uniform temperature profile |
Hydrofluoric acid, 48%, ACS reagent | Sigma-Aldrich | 7664-39-3 | CAUTION, extremly hazardous |
Hydrogen peroxide, 30%, ACS reagent | Fisher Chemical | 7722-84-1 | CAUTION, hazardous |
Isopropyl alcohol, >99.5%, ACS reagent | LabChem | 67-63-0 | CAUTION, chemical |
MLP-50 | Transducer Techniques | MLP-50 | Load cell |
Nitric acid, 70%, ACS grade | SAFC | 7697-37-2 | CAUTION, hazardous |
NSC-3000 | Nano-master | NSC-3000 | Magnetron sputter |
Potassium hydroxide, 45%, Certified | Fisher Chemical | 1310-58-3 | CAUTION, chemical |
Rocker 800 vacuum pump, 110V/60Hz | Rocker | 1240043 | Oil-free vacuum pump |
Silicon master mold | NILT | SMLA_V1 | Silicon chip with pattern |
Silicon wafers, prime grade | University wafer | 783 | Si wafer |
Silver target, 2" x 0.125", 99.99% purity | ACI alloys | HER2318 | Magnetron sputter silver target |
SP-300 | BioLogic | SP-300 | Potentiostat |
SPIN 150i | Spincoating | SPIN 150i | Spin coater |
SPR 200-7.0 positive photoresist | Microchem | SPR 220-7.0 | CAUTION, chemical |
Stirring hotplate | Thermo scientific Cimarec+ | SP88857100 | General purpose hotplate |
SU-8 2015 negative photoresist | Microchem | SU-8 2015 | CAUTION, chemical |
SYLGARD 184 Silicone elastomere kit | DOW | 4019862 | CAUTION, chemical |
T-LSR150B | Zaber Technologies | T-LSR150B-KT04U | Motorized linear stage |
Trichloro(1H,1H,2H,2H-perfluorooctyl)silane (PFOCS), 97% | Sigma-Aldrich | 78560-45-9 | CAUTION, hazardous |