All’interfaccia di solventi organici e acquosi, proteine arofhiliche elastine su misura si assemblano in complesse strutture supramolecolari come vescicoli, fibre e coacervate innescate da parametri ambientali. I protocolli di assemblaggio descritti producono compartimenti basati su membrana proteica (PMBC) con proprietà regolabili, consentendo l’incapsulamento di vari carichi.
Gli elementi costituti recanti in modo proteico su misura sono candidati versatili per l’assemblaggio di strutture sopramolecolari come cellule minime, veicoli per la consegna di farmaci e scaffold enzimatici. A causa della loro biocompatibilità e sintonabilità a livello genetico, le proteine simili a Elastin (ELP) sono elementi costitutivi ideali per applicazioni biotecnologiche e biomediche. Tuttavia, l’assemblaggio di strutture sopramolecolari basate su proteine con proprietà fisiochimiche distinte e un buon potenziale di incapsulamento rimane impegnativo.
Qui forniamo due protocolli efficienti per l’autoassemblaggio guidato di ELP anfifile in architetture proteiche supramolecolari come coacervates sferiche, fibre e vescicole stabili. I protocolli di assemblaggio presentati generano compartimenti basati su membrana proteica (PMBC) basati su ELP con proprietà fisico adattabili. I PMBC dimostrano il comportamento della separazione di fase e rivelano la fusione della membrana dipendente dal metodo e sono in grado di incapsulare molecole di carico fluorescenti chimicamente diverse. I PNG risultanti hanno un alto potenziale applicativo come piattaforma di formulazione e somministrazione di farmaci, cellule artificiali e spazio di reazione compartimentato.
L’assemblaggio di strutture sovramolecolari per applicazioni biotecnologiche sta diventando sempre più importante1,2,3,4,5. Per l’assemblaggio di architetture funzionali come coacervate, vescicoli e fibre con proprietà fisico desiderate è importante comprendere e controllare le proprietà fisicochimiche e conformazionali dei componenti. A causa della precisione molecolare delle molecole presenti in natura, i mattoni per le strutture sopramolecolari sono sempre più basati su lipidi, acidi nucleici o proteine. Rispetto ai polimeri sintetici, gli elementi costitutivi proteici consentono un controllo preciso sulle strutture sopramolecolari emergenti6 a livello genetico. La sequenza primaria di amminoacidi (aa) dei singoli blocchi di costruzione proteica codifica intrinsecamente le informazioni per il loro potenziale di assemblaggio dalla molecola fino al livello macroscopico, nonché la forma tridimensionale e le proprietà fisiche della struttura sopramolecolare finale7.
I metodi segnalati per l’assemblaggio di diverse strutture sopramolecolari spesso coinvolgono proteine anfifile come le proteine di elastina sensibili alla temperatura (ELP)5,8,9, oleosina ricombinante10e proteine artificiali anfifili11. I metodi innescati dalla temperatura hanno portato all’assemblaggio di micelle4,10,12Fibre13Fogli14e vesciche9,15,16. Sono stati applicati metodi che coinvolgono solventi organici per la formazione di vesciche dinamiche a base di proteine8,11,14. Finora, i protocolli applicati per la formazione delle vesciche spesso non hanno il controllo dell’assemblaggio su assiemi di dimensioni micrometriche16,17o hanno un rendimento di assemblaggio limitato5. Inoltre, alcune vesciche a base di ELP segnalate hanno compromesso il potenziale di incapsulamento12stabilità limitata nel tempo9. Affrontando questi inconvenienti, i protocolli presentati consentono l’autoassemblaggio di strutture sovramolecolari di dimensioni micrometriche e sub micrometriche con proprietà fisiologiche distinte, buon potenziale di incapsulamento e stabilità a lungo termine. Gli ELP anfifile su misura si assemblano in strutture supramolecolari, spaziando dalla gamma di coacervates sferiche e fasci di fibre contorte altamente ordinati alle vescicole unilamellar a seconda del protocollo applicato e delle condizioni ambientali associate. Grandi compartimenti vescicolari a base di membrana (PMBC) rivelano tutti i principali fenotipi come la fusione della membrana e il comportamento di separazione di fase analogo ai liposomi. I PMCC incapsulano in modo efficiente molecole di carico fluorescenti chimicamente diverse che possono essere monitorate utilizzando una semplice microscopia a epifluorescenza. I domini ELP ripetitivi utilizzati in questo studio sono interessanti elementi costitutivi per architetture sovramolecolari basate su proteine18. L’unità di ripetizione pentapeptide ELP (VPGVG) è nota per tollerare diverse aa oltre alla prolina alla quarta posizione (valine, V), pur conservando le sue proprietà strutturali e funzionali19. Il design di ELP anfifili contenenti domini idrofili e idrofobici distintivi è stato realizzato inserendo residui di aa guest (X) nella ripetizione VPGXG con distinta idifobicità, polarità e carica20. I domini anfifili di ELP in cui sono dotati di fenilalanina idrofobica (F) o isoleuina (I) mentre il dominio idrofilo conteneva acido glutamico caricato (E) o arginina (R) come residui ospiti. Un elenco di costrutti ELP anfilici idonei e sequenze aa corrispondenti può essere trovato nelle informazioni supplementari e nei riferimenti8,21. Tutti i mattoni dove dotati di piccoli coloranti fluorescenti o proteine fluorescenti per la visualizzazione tramite microscopia a fluorescenza. mEGFP e altre proteine fluorescenti sono state fuse N-terminalemente ai domini idrofili degli anfifili ELP . I coloranti organici sono stati coniugati attraverso ceppo privo di rame promosso cicloaddition alkyne-azide (SPAAC) a un aminoacido innaturale introdotto in modo co-traduzionale (UAA). L’incorporazione co-traduzionale dell’UAApara-azidophenylalanine (pAzF)22permette la modifica n-terminale del dominio eLP idrofilo. In questo modo il coloranti verde fluorescente BDP-FL-PEG4-DBCO (BDP) o qualsiasi piccola molecola fluorescente con un ciclooctyne teso può essere utilizzato come sonda fluorescente. L’incorporazione di successo dell’UAA pAzF e la cicloaddition del colorante tramite SPAAC possono essere facilmente confermate tramite LC-MS/MS a causa di un’efficiente ionizzazione dei corrispondenti peptidi triptici8. Questo piccolo tincolo organico è stato applicato per ampliare la scelta del solvente per i protocolli di assemblaggio, poiché le proteine fluorescenti sono incompatibili con la maggior parte dei solventi organici. I due protocolli di assemblaggio più efficienti per le strutture sopramolecolari sviluppati nel nostro laboratorio sono descritti di seguito. Il metodo di gonfiore THF è compatibile solo con il tinri organico modificato ELP anfilico. Al contrario, il metodo di estrusione 1-butanol (BuOH) è compatibile con molte proteine come sonda fluorescente ad esempio mEGFP, poiché il metodo descritto conserva completamente la fluorescenza di queste proteine di fusione. Inoltre, l’incapsulamento di piccole molecole e il comportamento di fusione vescicolare funzionano meglio impiegando il metodo di estrusione BuOH.
Un difetto mentre seguii i protocolli descritti per l’assemblaggio di strutture sopramolecolari definite porta principalmente alla formazione di aggregati non specifici (Figura 2, IV) o ad anfifili ELP distribuiti omogeneamente. I passaggi critici del protocollo sono descritti di seguito:
Per l’alta resa dell’alta espressione dell’ELP anfipotico, una temperatura relativamente bassa di 20 gradi centigradi è ottimale. Per una purificazione basata sull’affinità di …
The authors have nothing to disclose.
Gli autori ringraziano il BMBF per il sostegno finanziario e il Center for Biological Systems Analysis per aver fornito la struttura di ricerca. Siamo grati a P. G. Schultz, TSRI, La Jolla, California, Stati Uniti per aver fornito il pEVOL-pAzF plasmide. Ringraziamo lo staff del Life Imaging Center (LIC) del Center for Biological Systems Analysis (BSA) dell’Albert-Ludwigs-University Friburgo per l’aiuto con le loro risorse di microscopia confocale, e l’eccellente supporto nella registrazione delle immagini.
1 µm and 0.2 µm Steril Filter | VWR | ||
1,4-Dithiothreitol | Merck | ||
1-butanol. >99.5% p.a. | Roth | ||
2log DNA ladder | NEB | ||
2-Mercaptoethanol | Roth | ||
50 mL Falcon tubes | VWR | ||
79249 Alkyne Mega Stokes dye | Sigma Aldrich | ||
Acetic acid glacial | VWR | ||
Acetonitrile, anhydrous, 99.8% | Sigma-Aldrich | ||
Ampicillin sodium-salt, 99% | Roth | ||
BDP-FL-PEG4-DBCO | Jena Bioscience | ||
Biofuge | Heraeus | ||
Bottle Top Filter with PES membrane (45 µm, 22 µm) | Thermo Scientific | ||
Brillant Blue G250 (Coomassie) | Roth | ||
BspQI | NEB | ||
Camera DS Qi1 | Nikon | ||
Centrifuge 5417r | Eppendorf | ||
Centrifuge 5810r | Eppendorf | ||
CF-400-Cu square mesh copper grid | EMS | ||
Chloramphenicol | Roth | ||
CompactStar CS 4 | VWR | ||
Dextran, Texas Red, 3000 MW, neutral | Life Technologies | ||
Digital sonifier | Branson | ||
Dimethylsulfoxide (DMSO) | Applichem | ||
Dnase I | Applichem | ||
EarI | NEB | ||
EcoRI-HF | NEB | ||
Environmental shaker incubator ES-20 | Biosan | ||
Ethanol absolute | Roth | ||
Ethidium bromide solution | Roth | ||
Filter supports | Avanti | ||
Glass plates | Bio-Rad | ||
Glycerol Proteomics Grade | Amresco | ||
Glycin | Applichem | ||
H4-Azido-Phe-OH | Bachhem | ||
Heat plate MR HeiTec | Heidolph | ||
HindIII | NEB | ||
HisTrap FF crude column | GE Life Sciences | Nickel column | |
Hydrochloride acid fuming, 37%, p.a. | Merck | ||
Illuminator ix 20 | INTAS | ||
Illuminator LAS-4000 | Fujifilm | ||
Imidazole | Merck | ||
Immersions oil for microscopy | Merck | ||
Incubators shakers Unimax 1010 | Heidolph | ||
Inkubator 1000 | Heidolph | ||
IPTG, >99% | Roth | ||
Kanamycinsulfate | Roth | ||
L(+)-Arabinose | Roth | ||
Laboratory scales Extend ed2202s/224s-OCE | Sartorius | ||
LB-Medium | Roth | ||
Lyophilizer Alpha 2-4 LSC | Christ | ||
Lysozyme, 20000 U/mg | Roth | ||
Microscope CM 100 | Philips | ||
Microscope Eclipse TS 100 | Nikon | ||
Microscopy cover glasses (15 x 15 mm) | VWR | ||
Microscopy slides | VWR | ||
Microwave | Studio | ||
Mini-Extruder Set | Avanti Polar Lipids | ||
NaCl, >99.5%, p.a. | Roth | ||
Natriumhydroxid pellets | Roth | ||
Ni-NTA Agarose, PerfectPro | 5 Prime | ||
Nucleopore Track-Etch Membrane | Avanti | ||
PH meter 766 calimatic | Knick | ||
Phenylmethylsulfonylflourid (PMSF) | Roth | ||
Polypropylene Columns (1 mL) | Qiagen | ||
PowerPac basic | BioRad | ||
Propanol-2-ol | Emplura | ||
Protein ladder 10-250 kDa | NEB | ||
Recirculating cooler F12 | Julabo | ||
Reinforcement rings | Herma | ||
SacI HF | NEB | ||
SDS Pellets | Roth | ||
Sodiumdihydrogen phosphate dihydrate, NaH2PO4 | VWR | ||
Sterile syringe filter 0.2 mm Cellulose Acetate | VWR | ||
T4 DNA Ligase | NEB | ||
TEMED | Roth | ||
TexasRed Dextran-Conjugate | MolecularProbes | ||
Thermomix comfort | Eppendorf | ||
THF, >99.5% p.a. | Acros | ||
Triton X 100 | Roth | ||
Trypton/Pepton from Casein | Roth | ||
Ultrasonic cleaner | VWR | ||
Urea p.a. | Roth | ||
Vacuum pump 2.5 | Vacuubrand | ||
XbaI | NEB | ||
XhoI | NEB | ||
ZelluTrans regenerated cellulose tubular membrane (12.0 S/ 3.5 S/ 1.0 V) | Roth |