ここでは、マウスの光遺伝学を用いた場所優先パラダイムに関する2つの簡単なステップバイステッププロトコルを紹介します。これら 2 つの異なる設定を使用して、好みと回避の動作は、高い空間的および時間的選択性を持つ同一装置内で、簡単な方法で確実に評価できます。
神経細胞活性化が特定の行動出力につながる方法を理解することは、現代の神経科学にとって基本です。げっ歯類の光遺伝学と検証済みのパラダイムでの行動試験を組み合わせることで、高い空間的および時間的選択性を有する、異なるニューロンの刺激に対する行動の結果をリアルタイムで測定することができ、したがって神経細胞の活性化と行動の因果関係。ここでは、リアルタイムの場所優先(RT-PP)パラダイム、古典的な条件付き場所優先(CPP)テストの修正版のためのステップバイステップのプロトコルについて説明します。RT-PPは、3区画装置で行われ、特定のニューロン集団の光遺伝学的刺激が報い、または回避的である場合に答えるために利用することができる。また、RT-PPプロトコルの代替バージョン、いわゆるニュートラルコンパートメント優先(NCP)プロトコルについても説明し、回避を確認するために使用することができます。2つのアプローチは、行動薬理学に由来する古典的方法論の拡張と神経科学分野における光遺伝学の最近の実施に基づいている。リアルタイムでの場所の好みの測定とは別に、これらの設定は、条件付きの動作に関する情報を提供することもできます。私たちは、独自のデータの例と一緒に簡単にステップバイステップのプロトコルを提供し、これらのタイプの実験を適用する際に考慮すべき重要な側面を議論します。
光を使って神経活動を制御する現代の神経科学実験ツールである光遺伝学の実装は、近年、特定のニューロン集団が行動に与える影響を理解する上で大きな進歩を遂げている。光遺伝学の顕著な空間的および時間的選択性は、興味のある細胞群の興奮または阻害と行動出力2、3との因果関係の確立を可能にする。光遺伝学における空間的選択性は、Cre recombinaseの活性が、いわゆる凝集対立する対立遺伝子(ロックス部位に隣接する)4と呼ばれる、ロクス部位間に存在する任意のDNA配列の組換えにつながるCre-Loxシステムを通じて一般的に保証される。光遺伝学におけるCre-Loxシステムの使用の目標は、周囲のニューロンに発現を欠くまま、関心のある特定のニューロンにおける光遺伝学的オプシンをコードする対立遺伝子の発現を達成することです。オプシンは、特定の波長の光刺激時に、神経興奮性に影響を与えるイオンの流れを可能にする光感受性タンパク質であり、下流のエフェクター経路を調節することによって細胞機能に影響を与えます。作用が異なるオプシン(興奮性、阻害性、変調性)の新しい変異体は、特定の実験アプローチのニーズを満たすために、光波長および運動特性5による活性化が継続的に開発されている。興奮性に関しては、脱分極または過偏光オプシンを使用すると、脳内に送達される特定の波長での光刺激に対するニューロンの活動(それぞれ励起または阻害)を決定する3。
選択的プロモーター活性は、Creリコンビナーゼの発現を目的のニューロンに向ける。対象のオプシンの凝集アレルを実施することにより、Cre媒介型の組換えにより、クレ・リコンビナーゼ3,6を共発現するニューロンでオプシンが選択的に発現することを保証する。この二重トランスジェニックを使用して空間選択性を直接使用することは、光遺伝学において非常に効率的であることが証明されています。従って、オプシンを活性化する光刺激は、光源(LEDまたはレーザー)3に接続された脳内移植光ファイバを介して広く送達される一方で、Cre recombinaseと凝集オプシンアレルの両方を発現するニューロンのみがこの刺激に応答するであろう。げっ歯類のCre-Loxシステムは、トランスジェニック(Cre recombinaseとfloxedオプシン構築物の両方がトランスジェニック動物にコードされている)のみを使用して異なる方法で達成することができ、ウイルス注射(Cre recombinaseとfloxedオプシンのDNA構築物は両方ともウイルスキャリアを介して送達される)、または2つの組み合わせ(例えば、2つの組み合わせ)を使用することによって達成することができる。 Cre recombinaseは、凝集オプシン構築物を運ぶウイルスを注射されたトランスジェニック動物によってコードされる)5.凝集オプシンDNA構築物は、通常、組織切片におけるCre媒介的再結合の可視化を可能にするためにレポーター遺伝子とフレームでクローニングされる。光遺伝学はラットでも行うことができるが、提示されたプロトコルはマウスに対して生成されている。簡単にするために、Creリコンビナーゼとフロキシドオプシンの両方を運ぶマウスを「光遺伝学マウス」と呼ぶ。以下に記載するプロトコルでは、光遺伝学マウスは、混合トランスジェニック(2つの異なるプロモーターの制御下にあるCre recombinase)およびウイルス(アデノ関連ウイルスAAVを使用して、凝集オプシンDNA構築物を送達する-我々の場合ChR2/H134R)アプローチによって生成された。トランスジェニックマウスラインの取得と維持は、方法論の重要な部分です。Cre-driverおよびfloxedオプシントランスジェニックマウスは、クレ・リコンビナーゼとフロックスオプシンを異なる形態でコードするDNA配列を運ぶウイルスの範囲と同様に、各目的のために製造されるか、または市販されている場合に購入することができる。
光遺伝学と行動検査は、特定の種類の行動における明確な脳領域、または離散ニューロン集団の役割を研究するための貴重なツールであることが証明されています。報酬関連行動の文脈では、光遺伝学は、行動薬理学および実験心理学の分野における以前の知見の検証を可能にし、また、特定のニューロンが行動にどのように影響するかを示す新しいレベルの時空間的に関連する解剖を可能にした。報酬関連の行動を評価するためにいくつかの研究で使用されている1つの方法は、条件付き場所の好み(CPP)として知られている古典的な方法の修正版である。古典的なCPPは、環境7、8の手がかりとパブロビアンの関連を誘導する能力を介して虐待の薬物のやりがいまたは回避的な特性を評価するために使用されている。パブロビアン用語では、薬は、それがそれぞれやりがいまたは回避的である場合、アプローチや撤退を引き出すことができるので、無条件の刺激です。様々な中立刺激を伴う薬物の連続的な組み合わせは、自身がいかなる応答も引き出さないということ、以前中立の提示の際に単にアプローチまたは離脱を招く可能性があるが、ペアリング後、いわゆる条件付き刺激9。CPP解析は通常、同じサイズの2つのコンパートメントを含む装置で実行されますが、各コンパートメントは床の質感、壁のパターン、照明(ニュートラル刺激)などの明確な特性によって定義されます。2つのコンパートメントは、廊下またはコンパートメント間の開口部によって接続されます。コンディショニング中、被験者は通常、小さなげっ歯類で、他の区画に制限されている間、2つの主要な区画および生理液の1つに制限されている間、薬物の受動注射を受ける。薬物のやりがいのある効果は、被験者が装置全体を自由に探索することが許される場合、薬物フリーセッションで評価される。以前に薬物対のコンパートメント(条件付き応答)に費やされた時間の量は、薬物のやりがいのある効果とその投与に関連するコンパートメントの手掛かりとの間に仲介されるパブロビアン学習メカニズムを反映すると考えられる(条件付き刺激)。動物が薬物対のコンパートメントでより多くの時間を費やす場合、薬物は行動にやりがいのある効果を有することを意味する条件付きの場所の好みを誘発した。一方、薬物が回避的であると認識された場合、動物は薬物対のコンパートメントを避け、生理前のコンパートメントに多くの時間を費やし、条件付きの場所回避(CPA)8、9、10、11を示す。
光遺伝学は「リアルタイム」での神経活動を制御するために実装することができるので、CPPセットアップと同様の、しかし異なる行動パラダイムの使用は、直接の神経活性化時の場所の好みの測定を可能にする。したがって、場所の嗜好の光遺伝学駆動分析は、しばしばリアルタイムの場所優先(RT-PP)分析パラダイムと呼ばれる。RT-PPパラダイムでは、Cre-Loxシステムを介した異なるニューロンの光遺伝学的刺激が古典的なCPPで行われる薬物の全身送達に取って代わるので、RT-PPパラダイムが光遺伝学的に誘導されたニューロン刺激が測定されるようにするやりがいまたは回避として認識されます。現在の記述は、マウスの光遺伝学に焦点を当てるが、同様のプロトコルを使用してラットをテストすることができる光遺伝学も。
古典的なCPPパラダイムのように一度に1つのコンパートメントにコンディショニングする代わりに、RT-PPパラダイムの光遺伝学マウスは、装置全体で自由に移動することができ、行動はセッション全体を通して記録される。コンパートメントの1つに入り、頭蓋内光刺激と組み合わされます。適切な光刺激パラメータの下で、興奮性オプシンを発現するニューロンがそれによって活性化される。光刺激がやりがいとして認識された場合、光遺伝学マウスは光対のコンパートメントに残り、光刺激が回避的であると認識された場合、マウスはコンパートメントを出て刺激を逃れます。このタイプの分析は、偶発的な学習を評価することを可能にする:被験者は、コンパートメントに入ることによって光刺激およびしたがって神経活性化を引き起こし、インストゥルメンタルタスク中のレバープレスと同様に、コンパートメントを出ることによって刺激を停止することができる。さらに、連想学習機構は、刺激がない状態で各区画で費やされた時間を測定する後続のセッションで評価することができる。このようにして、研究者は、関心のあるニューロンの刺激に対する即座にやりがいのある効果とそれに関連する連想記憶形成との間で解離することができる12.
現在の研究では、自由に動くマウスの光遺伝学駆動の場所優先行動に関する2つの段階的なセットアッププロトコルについて説明する。最初のプロトコルは、3区画の装置内でRT-PPを記述し、最近Rootと同僚13と他の著者12、14、15、16、17、18によって提示されたプロトコルに基づいて概説されています。実験は、複数の日次セッションで構成される 2 つのフェーズから構成されます (図 1Aを参照)。各セッションは、異なる目的のために設計されており、コンパートメントとのカップリング刺激のパラメータは、それに応じて変更されます。最初のセッションである「Pretest」は、いずれかの区画に対する被験者の初期の好みを評価するために使用される。パッチコードに接続したまま、被験者は15分間の刺激がない状態で装置を自由に探索することが許される。1 つのコンパートメントの初期設定が 80% を超える場合、初期サイドバイアスが解析を歪める可能性があるため、マウスは分析から除外されます。”プリテスト” の後に、フェーズ 1が開始されます。最初の部分は、2つの連続して構成されています, 毎日, 30 分のセッションの“RT-PP”.「フェーズ1」の間、光遺伝学マウスはパッチコードを介してレーザー源に接続され、それを自由に探索するためにアリーナに置かれる。マウスは、メインコンパートメントの1つに入ると頭蓋内レーザー刺激を受けます。パイロット実験を実行して、どのコンパートメントをレーザーペアとして割り当て、どのコンパートメントをペアリングしていないかを判断できます。刺激がやりがいがあると示された場合、レーザーは「プリテスト」の間に最も好ましくないコンパートメントに結合され、刺激が回避的であれば最も好ましい。したがって、提示されたRT-PPプロトコルは、レーザー刺激が2つの主要なコンパートメント(非バイアス設計)のいずれにもランダムに割り当てられていないという意味で偏った設計に従うが、マウスの初期の好みを避けるために選択される。2つのメインコンパートメントを接続する他のメインコンパートメントまたはニュートラルコンパートメントへの入口は、頭蓋内光刺激を生じさせないため、光対ではありません。これらのセッションは、特定の神経集団の刺激のやりがいまたは回避的な特性のリアルタイム評価を可能にする。「フェーズ1」の最終日に、刺激のない15分のセッションが行われます。このセッションは、刺激とそれが受け取られた環境との間の連想学習から生じる条件付き応答(“CR”)に対処するために役立ちます。「 フェーズ 1」 の少なくとも 3 日後に “逆転フェーズ” が行われ、これは “フェーズ 1” と同じ構造に従って行われますが、以前にペアになっていないメイン コンパートメントは光刺激と組み合わされます。「フェーズ1」の場合と同様に、2つの刺激セッションの後に「CR」セッションが続きます。”逆転相” は、マウスの挙動が光遺伝学的刺激に依存しており、ランダムパラメータとは関係ないことを確認するために使用されます。RT-PP実験の各セッションは、トラッキングソフトウェア内で個別にプログラムする必要があります。現在のプロトコルは特定のソフトウェア内でこのような設定を記述しますが、トランジスタ-トランジスタ-ロジック(TTL)変調信号を光源に送信できる他のトラッキングソフトウェアを使用することができます。
2 番目のプロトコルは、ニュートラル コンパートメント プリファレンス (NCP) パラダイムと呼ぶ新しい設定について説明します。RT-PPのこの変更されたプロトコルは狭く、透明な構成にマウスによって自然に避される接続の回廊の小さいサイズそして透明性を利用する。両方のメインコンパートメントを光刺激と組み合わせ、光刺激のない廊下を離れるだけで、NCPセットアップを使用して、光遺伝学的刺激が受け取りを避けるために廊下でより多くの時間を費やすことを強制するかどうかをテストすることができます光遺伝学的刺激。2つの光対コンパートメントで過ごした時間と廊下で過ごした時間を比較することによって、光遺伝学的に誘発された嫌悪感の検証を行うことができます。NCP実験は、光遺伝学マウスがリアルタイムで好みを測定するために刺激(それぞれ30分)を受ける2つの連続した毎日のセッションと、RT-PPのそれと同様に条件付き応答を評価するための1つのレーザーフリーセッション(15分)で構成されています。プロトコル。
以下に提供されるRT-PPおよびNCPプロトコルは、最近、腹側テグメンタル領域(VTA)に位置する異なるタイプのニューロンが報酬関連行動12の様々な側面にどのように関与しているかの研究において、我々の研究室で検証された。ここで、RT-PPおよびNCPプロトコルの実施を例示するために、ドーパミントランスポーター(DAT)-Cre19および小胞グルタミン酸トランスポーター2(VGLUT2)-Cre20トランスジェニックマウスを、VTA上に凝集チャネルロドプシン2(ChR2)DNA構築物を運ぶAAVを立体的に注入した。提供されたRT-PPおよびNCPプロトコルを用いてこれらのマウスの分析で得られた行動応答は、VTA内のドーパミン作動性およびグルタミン酸性ニューロンの活性化が異なる行動応答をもたらす方法を示している(図1)。
RT-PPおよびNCPパラダイムの段階的なプロトコルには、トランスジェニックマウスのジェノタイピング、立体性ウイルス注射、光ファイバーの配置、レーザー制御および行動のための追跡ソフトウェアのプログラミングに至るまでの情報が提供されます。評価。さらに、科学的成果に影響を与える可能性のある刺激パラメータおよび実験的側面の観点からプロトコルの改変に関する提案が議論される。プロトコルはVTAの文脈で記述されているが、関連するCre-driverおよびfloxedオプシンのような関連する光遺伝学ツールが利用可能である場合、それらは任意の脳領域または神経集団に適用することができる。
今回の研究では、マウスの光遺伝学を用いて異なるタイプの場所優先分析を行う方法の2つのステップバイステッププロトコルを提示する。概説されたプロトコルは、VTAニューロンのやりがいまたは回避的な行動表現型(図1および図6)12)を評価するために使用されたが、他の脳領域におけるニューロンの行動的役割を調べるのにも利用できる。
いくつかの最近の研究では、2コンパートメント23、24および3コンパートメント装置13、14、15、16、17、18でRT-PPパラダイムを説明している。現在のプロトコルは、乱用薬物の投与に対する行動効果を評価するためにCPP実験で伝統的に使用されたものに似た3区画装置におけるRT-PPおよびNCPプロトコルの詳細な設定を記述している。結果は、マウスが各コンパートメントで費やした時間の割合としてのみここに提示されますが、トラッキングソフトウェアは、ゾーンへの遷移、速度、不動時間など、他のいくつかの行動パラメータの分析を可能にします。異なるパラメータの分析は、データの解釈に重要です。
現在のRT-PPプロトコルは柔軟性があり、異なるタイプの刺激パターンがやりがいのある効果を持つかどうかをテストするように変更することができます。レーザー制御のパラメータは、マイクロコントローラボードのスクリプトまたはトラッキングソフトウェア内で簡単に変更でき、セットアップの多様性を実証します。ドーパミン作動性およびグルタマティックニューロンとその末端部を研究するために、同じオプシン変異体(ChR2/H134R)を用いて以前の研究で適用された周波数の範囲内にあり、時には低い周波数の20Hzの刺激周波数を提案する。最近の研究では、高い刺激周波数は、低い刺激よりも行動に逆の効果を持つことができることを実証しています, そして、これらの効果は、より高い周波数によって引き起こされる脱分極ブロックを介して仲介されることを28.同様に、行動出力の違いは、横眼前視領域15におけるグルタミン酸作動性およびGABAergicニューロンを刺激する際に示されている。これらの研究は、VTAとは異なる領域のニューロンを調べ、最大の効果は、非グルタミン酸性ニューロン15、28の高周波数に観察された。20 Hzの我々の選択は、グルタミン酸作動性およびドーパミン作動性VTAニューロンの以前の研究に基づいており、刺激周波数の変化によって、報酬関連の行動出力が24、26に有意に変化しないことを実証している。
調整可能で、実験結果に影響を与える可能性のある追加パラメータは、光源のパワーです。レーザーパワーが高いほど光刺激領域のサイズを大きくすることができ、これはいくつかのタイプの実験では有益であるが、温度5の上昇の欠点を伴う。実際、最近の研究では、レーザーによる温度上昇が脳の生理学を変え、行動測定に影響を与える可能性があることを実証しました29.これらの観測は、実験計画にオプシン陰性制御を含む重要性を強調している。現在のプロトコルでは、同様の10 mWレーザーパワーを使用し、VTA16、24、26のドーパミン作動性およびグルタミン酸性ニューロンを刺激するのに有効であることが以前に示されている。実験を立てる際には、対象となるセルが位置する面積の大きさや、光ファイバーやパッチコードの特性(開口数、芯径)に注意することが重要です。これらのパラメータは、レーザーパワーに関連する計算を行う際に考慮に入れる必要があります。詳細については、カール・デイセロスの研究室(http://web.stanford.edu/group/dlab/cgi-bin/graph/chart.php)が開発した電卓を使用することができます。
Cre-Lox再結合の組織学的検証は、光遺伝学実験を行う際のもう一つの重要な側面である。組換え効率の検証は、大きな動物群での行動実験の開始前にパイロットコホートで常に行われるべきである。これは倫理的な理由だけでなく、最適化された実験的な出力のためにも重要です。各ウイルス構成体は、異なるニューロン型および異なる領域5において可変特異性を示す可能性があり、予測不可能な方法や誤解を招く方法で実験に影響を与える可能性のあるパラメータである。例えば、我々は以前にDAT-CreマウスのVTAにおけるAAV5ウイルスのCre-Lox組換えパターンを検証し、一方的な注射が関心領域の大部分を標的にするのに十分であることを発見した。その後、NeuroD6発現を特徴とするようなVTA内の空間的に制限された亜集団を研究したところ、二国間ウイルス注射は、光遺伝学的光刺激12でより顕著な行動効果を与えるより多くのニューロンを標的にするためにより効率的であることが観察された。さらに、手術から行動実験の開始までの時間は慎重に取り組まなければならない。ここで示すように、ChR2 DNAコンストラクトが細胞体で発現するのに十分な2週間ですが、研究者がプロジェクション領域13、14、15、17で刺激の効果をテストしている場合は、より長い待ち時間(〜8週間)が必要になる可能性があります。
VTAでニューロンを研究する際に注入されたウイルスの量(300nL)が適している可能性があることは注目に値するが、体積と力ターは、トランスダクションの効率と研究された構造の大きさに応じて調整されなければならない。さらに、二国間の構造が、平凡な軸から離れた位置にある場合、両側注射を行い、両半球の活性化/阻害を確実にするために二国間で光ファイバーを二国間に移植することが必要な場合がある。
最後に、Cre-Loxの組換えの効率を検証および確認し、目的の場所で光ファイバの正しい移植部位を検証するために、事後分析を行うことが常に必要です。予期せぬ、過度に制限された、または過剰なCre-Loxの再結合は、意図された領域の境界外にCreを発現するニューロンの未知の分布のために発生する可能性があり、またはウイルス血清型の違い、ウイルスの取り扱いの不良、目詰まりの原因ウイルスの配信や他の手術関連の問題のための注射器.満足のいくCre-Loxの組換えおよび正しい光ファイバー注入の検証は、安全な結論を導くために行動評価の統計的な結果を確認するために行われなくてはなりません。
ここで提供されるデータの観点から、2つの行動パラダイムがどのように使用できるかの例として、RT-PPパラダイムにおけるDAT-Creマウスを分析することによってVTAにおけるドーパミン作動性ニューロンの光遺伝学的刺激によって得られる光対側に対する有意な好みは、VGLUT2によって示されたこの側の回避に基づいて予想された23、24、25、26、27であった。VTAのVGLUT2ニューロンとその予測は、報酬と嫌悪感16、17、24、30、31の両方に関与することが示されており、したがって、現在のRT-PP設定で観察された明らかな回避行動をより詳細に評価するためにNCP分析を行った。狭く透明なコリドーを唯一の非光対コンパートメントとして使用してVTAグルタミン酸作動性ニューロンの刺激の回避特性を確認することにより、この特定の3区画のセットアップにおいて、これらのニューロンの光遺伝学的活性化が回避応答を引き起こすことが明らかである。RT-PPとNCPプロトコルの両方を使用して利益を得る可能性のある状況を例示するためにここに示されたこれらの実験は、最近発表された研究の一部であり、これらの知見に関する完全なデータセットおよびこれらの知見に関する議論は、この出版物12で見つけることができます。
NCPに加えて、回避を確認する別の方法は、レーザー活性化にアリーナの残りの部分をペアリングしながら、オープンフィールド領域内の領域の強い照明を含む、またはマウスがレーザー刺激15を終了するために特定の行動パターンを実行しなければならないアクティブ回避タスクを実行する。
要約すると、記載されているプロトコルは、報酬と嫌悪における神経活性化の役割を解明するために、RT-PPおよびNCP分析を最も効率的な方法で正常に実行する方法の重要な情報を提供する。科学的仮説に応じて、これらのプロトコルを使用して様々なパラメータを分析することができ、各プロトコルは、特定の脳に対処するために光遺伝学を実装する最適化された行動分析のために他の検証済みのパラダイムと組み合わせることもできます関心のある領域とニューロン。
The authors have nothing to disclose.
ウプサラ大学、ヴェテンスカプスローデット(スウェーデン研究評議会)、ハルンフォンデン、パーキンソンフォンデン、ベルティル・ホルステンの研究財団、OE&エドラ・ヨハンソン、ズーロギスク・フォルスクニング、オーレンなど、私たちの資金源は感謝しています。ウプサラ大学で動物を飼育し、ウプサラ大学行動施設で実験を行った。
AAV-Cre dependent virus | UNC Vector Core | – | a great variety of viruses to suit any project's needs |
Agarose | VWR Life Science | 443666A | |
Buffer for PCR | KAPA BIOSYSTEMS | KB1003 | 10x, contains 1.5mM MgCl2 at 1x |
Bupivacaine (Marcain) | Aspen | N01BB01 | local anesthetic, 5 mg/ml solution, requires prescription |
Carprofen (Norocarp) | N-Vet | 27636 | anti-inflammatory, analgesic; 50 mg/ml solution, requires prescription |
dNTP set | Thermo Fisher Scientific | R0181 | 100mM, have to be dilluted to 10mM and mixed |
DNA ladder | Thermo Fisher Scientific | SM0243 | 100 bp, 50 μg Gene Ruler |
DNA loading dye | Thermo Fisher Scientific | R0611 | 6x, dilute to 1x before using |
Ear puncher | AgnThos | AT7000 | ear puncher to take tissue samples for PCR or to mark animals |
Fiberoptic patchcords | Doric Lenses | MFP_200/240/900-0.22_1m_FC-ZF1.25 | |
Implantable fiberoptics | Doric Lenses | MFC_200/245-0.37_5mm_ZF1.25_FLT | the properties of the fibers might change depending on the experiment |
Infusion pump for virus injections | AgnThos | Legato 130 | contains remote pump to secure the syringe directly on the stereotexi frame |
Isoflurane (Forane) | Baxter | N01AB06 | Volatile anesthetic, requires prescription |
Jewelry screws | AgnThos | MCS1x2 | |
Laser source | Marwell Laser Systems | CNI MBL-III-473-100mW | |
Microcontroller board | Arduino | "Uno" board | can be ordered from several companies |
Microdrill | AgnThos | 1474 | could be ordered with or without stereotaxic holder |
Needle (34G) | World Precision Instruments | NF36BV | |
Nucleic Acid gel stain – GelRed | Biotium | 41003-T | |
PCR tubes | Axygen | PCR-0208-CP-C | |
Power meter | Thorlabs | PM100D | |
Place Preference Apparatus | Panlab | 76-0278 | |
Rotary joint | Doric Lenses | FRJ_1x1_FC-FC | |
Sleeves | Doric Lenses | SLEEVE_ZR_1-25 | mating sleeve to connect the patchcord with the implanted optic fiber |
Stabilization cement | Ivoclar Vivadent | Tetric EvoFlow | |
Syringe (10ul) | World Precision Instruments | NanoFil | |
Taq polymerase | KAPA BIOSYSTEMS | KE1000 | 500U |
TAE buffer | Omega BIO-TEK | SKU:AC10089 | 50x concentration, has to be dilluted before use |
Thermal cycler | BIO-RAD S1000 | 1852148 | necessary to perfrom PCR reactions |
Tissue glue | AgnThos | Vetbond | |
Tracking software | Noldus | Ethovision XT | |
TTL box | Noldus | Noldus USB-IO box | |
UV transilluminator | Azure Biosystems | c200 model |