Summary

ランタニド系分子単結晶における光学異方性の研究ツールとしてのハイパースペクトルイメージング

Published: April 14, 2020
doi:

Summary

ここでは、超スペクトルイメージングシステムを用いて、発光ハイパースペクトルイメージングデータを取得し、ランタニド系単結晶の光学異方性の特徴を解析するプロトコルを紹介する。

Abstract

本研究では、発光ランタニド(Ln3+)ベースの分子単結晶の解析におけるハイパースペクトルイメージング(HSI)の新規応用プロトコルについて説明する。代表的な例として、我々は、UV励起の下で明るい可視放出を示すヘテロダイコンニルベース複合体[TbEu(bpm)(tfaa)6](bpm=2,2′-ビピリミジン、tfaa-=1,1,1-トリフルオロアセチルアセトネート)の単結晶を選んだ。6HSIは、得られた画像の各画素からのスペクトル情報と発光構造の2次元空間イメージングを組み合わせた新たな技術である。具体的には、[Tb-Eu]複合体の単結晶上のHSIは、研究された結晶に沿って異なる点で発光強度の変動を明らかにする局所スペクトル情報を提供した。これらの変化は、結晶中に存在する光学異方性に起因し、これは結晶構造の各方向におけるLn3+イオンの異なる分子パッキングから生じる。本明細書に記載するHSIは、分子材料の分光空間的調査に対するこのような技術の適合性の一例である。しかし重要なことに、このプロトコルは、他の種類の発光材料(ミクロンサイズの分子結晶、無機微粒子、生体組織のナノ粒子、標識された細胞など)に容易に拡張することができ、構造特性関係のより深い調査のための多くの可能性を開くことができます。最終的には、バイオイメージングから、波導管や光電子デバイスなどの技術アプリケーションまで、幅広い用途に向けた先端材料のエンジニアリングに活用される知識を提供します。

Introduction

ハイパースペクトルイメージング(HSI)は、各x-y座標があらゆる種類の分光法、すなわち光発光、吸収および散乱分光1、2、32,3に基づくスペクトル情報を含む空間マップを生成する技術である。1その結果、3次元データの集合(「ハイパースペクトルキューブ」とも呼ばれる)が得られ、x-y座標は空間軸、z座標は分析されたサンプルからのスペクトル情報である。したがって、ハイパースペクトルキューブには空間情報とスペクトル情報の両方が含まれているため、従来の分光法よりも詳細な分光分析を行う。HSIはリモートセンシングの分野(例えば、地質学、食品産業4)で長年知られてきましたが,6,7,最近ではナノ材料22、5、5または生体医学用アプリケーション用プローブの特性評価のための革新的な技術として登場しました。一般的に言うと、UV/可視/近赤外(NIR)ドメインに限定されるものではなく、例えば異なる材料の元素分布を特徴付けるためにX線などの他の放射線源を使用して拡張することもできます 8また、光発光マッピングは、単層MoS210の光学特性をプローブするラマンマッピングと組み合わされている。しかし、報告された光学,HSIの用途の中で、ランタニド系材料,11、12、13、14、15、16、17のHSIに関する例はまだごくわずかです。11,12,13,14,151617例えば、組織6における癌の検出、生体組織における光貫通深度の解析7、多重化生物学的イメージング3、ハイブリッド系11における多成分エネルギー移動の解析、およびナノ粒子12の分光特性における凝集誘導変化の調査を挙げられる。明らかに、HSIの魅力は、環境特異的な発光に関する知識を生成し、プローブに関する空間情報とスペクトル情報を同時に提供する適合性から生じます。

この強力な技術を利用して、我々はヘテロ二次核結核3+ -Eu3+単結晶の光学異方性を3+調査するためのプロトコルを記述する [TbEu(bpm)(tfaa)6] (図 1a)13.観察された光学異方性は、異なる結晶学的方向(図1b)におけるLn3+イオンの異なる分子パッキングから生じ、結晶面が明るい状態を示すものもあれば、光発光が薄暗くなるものもある。結晶の特定の面での発光強度の増加は、Ln3+···Ln3+イオン距離は最短の 13 .

これらの結果に動機づけられて、我々はHSIを通じた光学異方性を分析するための詳細な方法論の確立を提案し、特定の分子配置18,19,19に起因するイオンイオンエネルギー伝達プロセスおよび調整可能な発光特性をよりよく理解するための道を開く。これらの構造特性関係は、ナノおよびマイクロスケールでの導波システムおよび光磁気記憶装置を含むが、これに限定されない革新的な光学材料設計のための重要な側面として認識されてきた- より効率的で小型化された光学系20の需要に対処する。

Protocol

注意: イメージャーを操作するときに常に使用されている励起波長に固有の安全ゴーグルを使用することをお勧めします。 1. ハイパースペクトル顕微鏡の構成 注: ハイパースペクトルイメージングシステムの概要を図 2aに示し、イメージャーの主要コンポーネントについて説明します。イメージングシステムは、サンプルからの?…

Representative Results

Lnベースの分子単結晶(すなわち、TbEu(bpm)(tfaa)6]、図1a)におけるデータ取得用ハイパースペクトル顕微鏡の構成を例示すると、図2は、システムの概観とセットアップにおける光学キューブの正しい配置を示す。6図 3は、HSI 取得時に使用したメニューを含む PHySpec ソフトウェアのスクリーン ショットを示しています。<st…

Discussion

ここで説明するハイパースペクトルイメージングプロトコルは、サンプルの正確な位置で分光情報を得ることができる簡単なアプローチを提供します。上記の設定を使用すると、空間解像度(xおよびyマッピング)は0.5μmまでまで達し、スペクトル解像度は可視範囲でのマッピングでは0.2 nm、NIR範囲では0.6nmに達することができます。

単一の結晶でハイパース?…

Disclosures

The authors have nothing to disclose.

Acknowledgements

著者らは、オタワ大学化学生命分子科学科のディラン・エラーラット氏とムラリー・ムルゲス教授に対し、単結晶の提供に対して感謝している。E.M.R.、N.R.、E.H.は、オタワ大学、カナダイノベーション財団(CFI)、カナダ自然科学工学研究評議会(NSERC)が提供する財政支援を感謝しています。

Materials

Microscope glass slides FisherBrand 12-550-15 Glass slides used for sample preparation
Visible and Near Infrared Hyperspectral Confocal Imager PhotonETC Microscope used for the analysis, builted according to the user needs, therefore it is no catalog number

References

  1. ElMasry, G., Sun, D. W. Principles of Hyperspectral Imaging Technology. Hyperspectral Imaging for Food Quality Analysis and Control. , 3-43 (2010).
  2. Dong, X., Jakobi, M., Wang, S., Köhler, M. H., Zhang, X., Koch, A. W. A review of hyperspectral imaging for nanoscale materials research. Applied Spectroscopy Reviews. 54 (4), 285-305 (2019).
  3. Yakovliev, A., et al. Hyperspectral Multiplexed Biological Imaging of Nanoprobes Emitting in the Short-Wave Infrared Region. Nanoscale Research Letters. 14 (243), 1-11 (2019).
  4. Cheng, W., Sun, D. W., Pu, H., Wei, Q. Heterospectral two-dimensional correlation analysis with near-infrared hyperspectral imaging for monitoring oxidative damage of pork myofibrils during frozen storage. Food Chemistry. 248, 119-127 (2018).
  5. Liu, Y., Liu, L., He, Y., Zhu, L., Ma, H. Decoding of quantum dots encoded microbeads using a hyperspectral fluorescence imaging method. Analytical Chemistry. 87 (10), 5286-5293 (2015).
  6. Leavesley, S. J., et al. Colorectal cancer detection by hyperspectral imaging using fluorescence excitation scanning. Optical Biopsy XVI: Toward Real-Time Spectroscopic Imaging and Diagnosis. 10489, (2018).
  7. Zhang, H., Salo, D., Kim, D. M., Komarov, S., Tai, Y. -. C., Berezin, M. Y. Penetration depth of photons in biological tissues from hyperspectral imaging in shortwave infrared in transmission and reflection geometries. Journal of Biomedical Optics. 21 (12), 126006 (2016).
  8. Naccache, R., et al. Terahertz Thermometry: Combining Hyperspectral Imaging and Temperature Mapping at Terahertz Frequencies. Laser and Photonics Reviews. 11 (5), 1-9 (2017).
  9. Jacques, S. D. M., Egan, C. K., Wilson, M. D., Veale, M. C., Seller, P., Cernik, R. J. A laboratory system for element specific hyperspectral X-ray imaging. Analyst. 138 (3), 755-759 (2013).
  10. Birmingham, B., et al. Probing the Effect of Chemical Dopant Phase on Photoluminescence of Monolayer MoS2 Using in Situ Raman Microspectroscopy. Journal of Physical Chemistry C. 123 (25), 15738-15743 (2019).
  11. Marin, R., et al. Harnessing the Synergy between Upconverting Nanoparticles and Lanthanide Complexes in a Multiwavelength-Responsive Hybrid System. ACS Photonics. 6 (2), 436-445 (2019).
  12. Gonell, F., et al. Aggregation-induced heterogeneities in the emission of upconverting nanoparticles at the submicron scale unfolded by hyperspectral microscopy. Nanoscale Advances. 1, 2537-2545 (2019).
  13. Errulat, D., Gabidullin, B., Murugesu, M., Hemmer, E. Probing Optical Anisotropy and Polymorph-Dependent Photoluminescence in [Ln2] Complexes by Hyperspectral Imaging on Single Crystals. Chemistry – A European Journal. 24 (40), 10146-10155 (2018).
  14. Panov, N., Marin, R., Hemmer, E. Microwave-Assisted Solvothermal Synthesis of Upconverting and Downshifting Rare-Earth-Doped LiYF4 Microparticles. Inorganic Chemistry. 57 (23), 14920-14929 (2018).
  15. Debasu, M. L., Brites, C. D. S., Balabhadra, S., Oliveira, H., Rocha, J., Carlos, L. D. Nanoplatforms for Plasmon-Induced Heating and Thermometry. ChemNanoMat. 2 (6), 520-527 (2016).
  16. Nadort, A., et al. Quantitative Imaging of Single Upconversion Nanoparticles in Biological Tissue. PLoS ONE. 8 (5), 1-13 (2013).
  17. Sava Gallis, D. F., et al. Tunable Metal-Organic Framework Materials Platform for Bioimaging Applications. ACS Applied Materials and Interfaces. 9 (27), 22268-22277 (2017).
  18. Varghese, S., Das, S. Role of molecular packing in determining solid-state optical properties of π-conjugated materials. Journal of Physical Chemistry Letters. 2 (8), 863-873 (2011).
  19. Yan, D., Evans, D. G. Molecular crystalline materials with tunable luminescent properties: From polymorphs to multi-component solids. Materials Horizons. 1 (1), 46-57 (2014).
  20. Mu, S., Oniwa, K., Jin, T., Asao, N., Yamashita, M., Takaishi, S. A highly emissive distyrylthieno[3,2-b]thiophene based red luminescent organic single crystal: Aggregation induced emission, optical waveguide edge emission, and balanced ambipolar carrier transport. Organic Electronics: Physics, Materials, Applications. 34, 23-27 (2016).
  21. Binnemans, K. Interpretation of europium(III) spectra. Coordination Chemistry Reviews. 295, 1-45 (2015).
  22. Koyama, H., Fauchet, P. M. Anisotropic polarization memory in thermally oxidized porous silicon. Applied Physics Letters. 77 (15), 2316-2318 (2000).
  23. Kushida, T., Takushi, E., Oka, Y. Memories of photon energy, polarization and phase in luminescence of rare earth ions under resonant light excitation. Journal of Luminescence. 12-13, 723-727 (1976).
  24. Onuma, T., et al. Spectroscopic ellipsometry studies on β-Ga2O3 films and single crystal. Japanese Journal of Applied Physics. 55 (12), (2016).
  25. Favreau, P. F., et al. Excitation-scanning hyperspectral imaging microscope. Journal of Biomedical Optics. 19 (4), 046010 (2014).

Play Video

Cite This Article
Rodrigues, E. M., Rutajoga, N., Rioux, D., Yvon-Leroux, J., Hemmer, E. Hyperspectral Imaging as a Tool to Study Optical Anisotropy in Lanthanide-Based Molecular Single Crystals. J. Vis. Exp. (158), e60826, doi:10.3791/60826 (2020).

View Video