Nous décrivons une méthode de coloration rapide pour effectuer l’imagerie multispectrale sur les tissus congelés.
L’imagerie multispectrale de fluorescence sur les tissus formalin-fixes de paraffine-embedded (FFPE) permet la détection de marqueurs multiples dans un seul échantillon de tissu qui peut fournir des informations sur la coexpression d’antigène et la distribution spatiale des marqueurs. Cependant, un manque d’anticorps appropriés pour les tissus formalin-fixes peut restreindre la nature des marqueurs qui peuvent être détectés. En outre, la méthode de coloration prend beaucoup de temps. Ici, nous décrivons une méthode rapide pour effectuer la formation image de fluorescence multispectrale sur les tissus congelés. La méthode comprend les combinaisons de fluorophore utilisées, des étapes détaillées pour la coloration des tissus congelés de souris et humains, et les procédures de numérisation, d’acquisition et d’analyse. Pour l’analyse des colorants, un système d’imagerie multispectral de fluorescence semi-automatique disponible dans le commerce est utilisé. Grâce à cette méthode, jusqu’à six marqueurs différents ont été tachés et détectés dans une seule section de tissu congelé. Le logiciel d’analyse de l’apprentissage automatique peut cellules phénotype qui peuvent être utilisés pour l’analyse quantitative. La méthode décrite ici pour les tissus congelés est utile pour la détection de marqueurs qui ne peuvent pas être détectés dans les tissus de la FFPE ou pour lesquels les anticorps ne sont pas disponibles pour les tissus FFPE.
Les progrès récents dans les techniques d’imagerie microscopique ont considérablement amélioré nos connaissances et notre compréhension des processus biologiques et des états pathologiques. La détection in situ des protéines dans les tissus par immunohistochimie chromogénique (IHC) est régulièrement effectuée en pathologie. Cependant, la détection de marqueurs multiples utilisant la coloration chromogénique de LHC est difficile1 et de nouvelles méthodes pour employer des approches de coloration d’immunofluorescence multiplex (mIF), où plusieurs marqueurs biologiques sont étiquetés sur un seul échantillon de tissu, sont en cours de développement. La détection de marqueurs biologiques multiples est utile, parce que les informations liées à l’architecture des tissus, la distribution spatiale des cellules, et la co-expression des antigènes sont tous capturés dans un seul échantillon de tissu2. L’utilisation de la technologie d’imagerie par fluorescence multispectrale a rendu possible la détection de plusieurs marqueurs biologiques. Dans cette technologie, en utilisant des optiques spécifiques les spectres de fluorescence de chaque fluorophore individuel peuvent être séparés ou «non mélangés», permettant la détection de marqueurs multiples sans aucune traque spectrale3. L’imagerie multispectrielle de fluorescence devient une approche critique dans la biologie cellulaire, le développement préclinique de drogue, la pathologie clinique, et le profilage immunitaire de tumeur4,,5,6. Fait important, la distribution spaciale des cellules immunitaires (en particulier les lymphocytes T CD8) peut servir de facteur pronostique pour les patients atteints de tumeurs existantes7.
Diverses approches de coloration de fluorescence multiplex ont été développées et peuvent être effectuées simultanément ou séquentiellement. Dans la méthode de coloration simultanée, tous les anticorps sont ajoutés ensemble comme un cocktail en une seule étape pour étiqueter le tissu. La technologie UltraPlex utilise un cocktail d’anticorps primaires conjugués à l’hapten, suivi d’un cocktail d’anticorps secondaires anti-hapten conjugués au fluorophore. InSituPlex technology8 utilise un cocktail d’anticorps primaires conjugués à l’ADN uniques qui sont simultanément ajoutés au tissu suivis d’une étape d’amplification et enfin de sondes épurées au fluorophore qui sont complémentaires à chaque séquence d’ADN unique sur l’anticorps primaire. Ces deux technologies permettent la détection de quatre marqueurs plus 4′,6-diamino-2-phenylindole (DAPI) pour la coloration nucléaire. Deux autres approches pour la coloration simultanée de multiplex sont basées sur la spectrométrie secondaire de masse d’ion9. Le système d’imagerie Hyperion utilise la cytométrie de massed’imagerie 10 pour détecter jusqu’à 37 marqueurs. Cette technologie utilise un cocktail d’anticorps conjugués au métal pour tacher les tissus, et des zones spécifiques des tissus sont ablés par un laser et transférées à un cytomètre de masse où les ions métalliques sont détectés. Une autre technologie similaire est l’IONPath, qui utilise la technologie d’imagerie à faisceau d’ions multiplexed11. Cette technologie utilise un instrument de spectrométrie de masse modifié et une source d’ions d’oxygène au lieu d’un laser pour abler les anticorps conjugués au métal. Bien que toutes ces approches simultanées de coloration multiplexe permettent la détection de marqueurs multiples, les coûts impliqués pour conjuguer l’ADN, les haptens ou les métaux aux anticorps, la perte de tissu due à l’ablation, et le traitement d’image étendu pour le semage ne peut pas être sous-estimé. En outre, les kits et les protocoles de coloration ne sont actuellement disponibles que pour les tissus FFPE et le développement de panneaux personnalisés implique plus de temps et de dépenses.
La méthode séquentielle de coloration multiplex, en revanche, comprend l’étiquetage du tissu avec un anticorps à un marqueur, le décapage pour enlever l’anticorps, suivi par des répétitions séquentielles de ce processus pour étiqueter plusieurs marqueurs12. L’amplification du signal de tyramide (TSA) est la méthode de multiplexe séquentielle la plus fréquemment utilisée. Deux autres technologies de multiplexage utilisent une combinaison de méthodes de coloration simultanées et séquentielles. La plate-forme CODEX13 utilise un cocktail d’anticorps conjugués à des séquences uniques d’oligonucléotide d’ADN qui sont finalement étiquetés avec un fluorophore à l’aide d’une étape de polymérisation indexée suivie de l’imagerie, le décapage et la répétition du processus pour détecter jusqu’à 50 marqueurs. L’approche de coloration multiplexe MultiOmyx14 est une itération de colorant avec un cocktail de trois à quatre anticorps fluorophore-conjugués, imagerie, étanchéité des fluorophores, et répétant ce cycle pour détecter jusqu’à 60 marqueurs sur une seule section. Semblable à la méthode simultanée de coloration multiplex, tandis qu’un large éventail de marqueurs peuvent être détectés, le temps impliqué dans la coloration, l’acquisition d’image, le traitement, et l’analyse est étendu. L’étape de décapage/étanchéité consiste à chauffer et/ou à blanchir l’échantillon de tissu et, par conséquent, l’approche séquentielle de coloration multiplexe est couramment pratiquée sur les tissus ffPE qui maintiennent l’intégrité des tissus lors du chauffage ou du blanchiment.
La fixation de formaline et l’intégration subséquente de paraffine sont facilement exécutées dans un arrangement clinique, les blocs de tissu sont faciles à stocker, et plusieurs protocoles de coloration de multiplexe sont disponibles. Cependant, le traitement, l’intégration et la deparaffinisation des tissus FFPE, ainsi que la récupération d’antigène15, un processus par lequel les anticorps peuvent mieux accéder aux épitopes, prend beaucoup de temps. En outre, le traitement impliqué dans les tissus FFPE contribue à l’autofluorescence16 et les masques ciblent les épitopes, résultant en la variabilité et le manque de clone d’anticorps disponibles pour détecter les antigènes dans les tissus FFPE17,18,19. Un exemple est l’antigène leucocyte humain (HLA) classe I allèles20. En revanche, la congélation rapide des tissus n’implique pas d’étapes de traitement étendues avant ou après la fixation, contournant le besoin de récupération d’antigène21,22, et le rendant bénéfique pour détecter un plus large éventail de cibles. Par conséquent, l’utilisation de tissus congelés pour l’imagerie multispectrale de fluorescence peut être utile pour détecter des cibles pour des études précliniques et cliniques.
Étant donné les limites mentionnées ci-dessus lors de l’utilisation des tissus FFPE, nous avons demandé si l’imagerie multispectrale de fluorescence peut être effectuée sur les tissus congelés. Pour répondre à cette question, nous avons testé une méthode simultanée de coloration multiplexe à l’aide d’un panel d’anticorps fluorophore-conjugués pour détecter de multiples antigènes et analysé la coloration à l’aide d’un système d’imagerie multispectral semi-automatique. Nous avons pu tacher simultanément jusqu’à six marqueurs dans une seule section tissulaire dans un rayon de 90 min.
Les tissus congelés ont été largement utilisés pour l’imagerie mIF pour détecter traditionnellement trois à quatre marqueurs31 sur un tissu en utilisant la méthode directe et indirecte32. Dans la méthode directe, les anticorps sont conjugués aux colorants fluoréscing ou points quantiques33 pour étiqueter le tissu, tandis que dans la méthode indirecte, un anticorps primaire non judiciaire est utilisé pour étiqueter le tissu suivi d’u…
The authors have nothing to disclose.
Des conseils en imagerie et en analyse ont été fournis par le Research Resources Center – Research Histology and Tissue Imaging Core de l’Université de l’Illinois à Chicago, établi avec le soutien du bureau du vice-chancelier de la recherche. Les travaux ont été soutenus par NIH/NCI RO1CA191317 à CLP, par NIH/NIAMS (subvention du CRST 1P30AR075049-01) au Dr A. Paller, et par le soutien du Centre complet du cancer Robert H. Lurie au centre d’évaluation de l’immunothérapie de l’Université Northwestern.
Acetone (histological grade) | Fisher Scientific | A16F-1GAL | Fixing tissues |
Alexa Fluor 488 anti-mouse CD3 | BioLegend | 100212 | Clone – 17A2; primary conjugated antibody |
Alexa Fluor 488, eBioscience anti-human CD20 | ThermoFisher Scientific | 53-0202-82 | Clone – L26; primary conjugated antibody |
Alexa Fluor 555 Mouse anti-Ki-67 | BD Biosciences | 558617 | Primary conjugated antibody |
Alexa Fluor 594 anti-human CD3 | BioLegend | 300446 | Clone – UCHT1; primary conjugated antibody |
Alexa Fluor 594 anti-mouse CD8a | BioLegend | 100758 | Clone – 53-6.7; primary conjugated antibody |
Alexa Fluor 647 anti-human CD8a | BioLegend | 372906 | Clone – C8/144B; primary conjugated antibody |
Alexa Fluor 647 anti-mouse CD206 (MMR) | BioLegend | 141711 | Clone – C068C2; primary conjugated antibody |
Alexa Fluor 647 anti-mouse CD4 Antibody | BioLegend | 100426 | Clone – GK1.5; primary conjugated antibody |
C57BL/6 Mouse | Charles River Laboratories | 27 | Mouse frozen tissues used for multispectral training |
Coplin Jar | Sigma Aldrich | S6016-6EA | Rehydrating and washing slides |
DAPI Solution | BD Biosciences | 564907 | Nucleic Acid stain |
Diamond White Glass Charged Slides | DOT Scientific | DW7590W | Adhering tissue sections |
Dulbecco's Phosphate Buffered Saline 1x (without Ca and Mg) | Fisher Scientific | MT21031CV | Washing and diluent |
Gold Seal Cover Slips | ThermoFisher Scientific | 3306 | Protecting stained tissues |
Human Normal Tonsil OCT frozen tissue block | AMSBio | AMS6023 | Human frozen tissue used for multispectral staining |
Human Serum 1X | Gemini Bio-Products | 100-512 | Blocking and diluent for human tissues |
inForm | Akoya Biosciences | Version 2.4.1 | Machine learning software |
PerCP/Cyanine5.5 anti-human CD4 | BioLegend | 300529 | Clone – RPA-T4; primary conjugated antibody |
PerCP-Cy 5.5 Rat Anti-CD11b | BD Biosciences | 550993 | Clone – M1/70; primary conjugated antibody |
Phenochart | Akoya Biosciences | Version 1.0.8 | Whole slide scan software |
ProLong Diamond Antifade Mountant | ThermoFisher Scientific | P36965 | Mounting medium |
Research Cryostat | Leica Biosystems | CM3050 S | Sectioning tissues |
Superblock 1X | ThermoFisher Scientific | 37515 | Blocking mouse tissues |
Tissue-Tek O.C.T Solution | Sakura Finetek | 4583 | Embedding tissues |
Vectra 3.0 Automated Quantitative Pathology Imaging System, 6 Slide | Akoya Biosciences | CLS142568 | Semi-automated multispectral imaging system |
Vectra Software | Akoya Biosciences | Version 3.0.5 | Software to operate microscope |