ここでは、筋肉の膜特性を調べる新しい方法である筋肉速度回復サイクル(MVRC)の記録のためのプロトコルです。MVRCは、筋肉膜の電位および病理に関する筋肉イオンチャネル機能の変化のインビボ評価を可能にし、神経原性筋における筋脱分極の実証を可能にする。
従来の神経伝導研究(NCS)と筋電図(EMG)は神経筋障害の診断に適していますが、筋線維膜の特性や基礎疾患のメカニズムに関する情報は限られています。筋肉速度回復サイクル (MVRCs) 筋肉の作用電位の速度が先行作用電位の後の時間に依存する方法を示します。MVRCは、作用電位に従う膜電位の変化と密接に関連しており、それによって筋線維膜特性に関する情報を提供する。MVRCは、生体内のマルチファイバーバンドルからの直接刺激および記録によって迅速かつ容易に記録され得る。MVRCは、いくつかの神経筋疾患における疾患メカニズムの理解に役立っています。チャネオパシーを有する患者の研究は、筋肉興奮性に対する特定のイオンチャネル突然変異の異なる効果を実証している。MVRCは、神経原性筋肉を有する患者において以前に試験された。この以前の研究では、筋肉相対屈折期間(MRRP)が長引き、患者では早期超常性(ESN)および後期超常態(LSN)が健康なコントロールと比較して減少した。それにより、MVRCsは、その興奮性の低下の根元にある無傷のヒト筋線維における膜脱分極の証拠を生体内に提供することができる。ここで提示されるプロトコルは、MCVRC を記録し、記録を分析する方法を説明します。MVRCは、広範囲の神経筋疾患にわたる疾患メカニズムを明らかにするための迅速で簡単で有用な方法として機能する。
神経伝導研究(NCS)と筋電図(EMG)は、神経筋障害の診断に使用される従来の電気生理学的方法です。NCSは、神経1における軸索喪失および脱髄の検出を可能にするが、EMGは、筋障害または神経原性変化が神経損傷のために筋肉に存在するかどうかを区別することができる。しかし、NCSまたはEMGは、筋線維膜の特性および基礎疾患メカニズムに関する限られた情報を提供する。この情報は、筋肉生検2、3、4から孤立した筋肉の細胞内電極を使用して達成することができる。しかし, 患者の無傷の筋肉からの記録を使用して方法論を使用することは臨床的に重要です。.
第2の筋線維作用電位の速度は、第15の後の遅延の関数として変化し、そしてこの速度回復関数(または回復サイクル)は、ジストロフィーまたは変性筋の変化を示している。一本の筋線維からの記録量は、しかし、臨床用具6として使用するには低すぎた。しかしながら、Z’GraggenおよびBostockは後に、マルチファイバー記録を、同じ繊維繊維束から直接刺激および記録することによって得られ、このような記録を生体7で得る高速かつ簡単な方法を提供することを発見した。この方法7、8、9、10、11では、様々な相互刺激間隔(ISI)を伴う対パルス電気刺激のシーケンスが使用される。
評価されたMVRCパラメーターには、次の筋肉相対耐火期間(MRRP)が含まれます。2)初期超常現象(ESN);そして3)後期超常現象(LSN)。ESNおよびLSNは、作用電位が通常よりも速く筋肉膜に沿って行われる耐火期間の後の期間である。脱分極後電位、およびそれぞれ筋肉のt-尿細管中のカリウム蓄積は、超常現象の2つの期間の主な原因として仮説される。
MVRCの筋障害への広い適用性は、虚血7、10、12および腎障害13における膜脱分極の検出に示されているが、重篤な疾患筋障害14および封入体筋炎15における筋膜異常に関する情報を提供する。周波数ランプと間欠的な15 Hzおよび20 Hzシミュレーションプロトコルが導入されました。MVRC は、これらの追加プロトコルと共に、 遺伝性筋イオン性チャネルにおける様々な筋肉イオンチャネルにおける機能喪失または機能低下の突然変異に関連する筋膜興奮性に対する異なる効果を実証している(すなわち、ナトリウムチャネル筋内筋症、パラメタニア短大症、筋緊張性ジストロフィー17、アンデルセン-Tawil症候群18、およびミオコンゲン190)。
最近の研究では、神経原性筋に対するMVRCの適用性が初めて示された。「神経原性筋」という用語は、前角細胞または運動軸索に対する傷害後の脱脳および再び発達する骨格筋の二次的変化を指す。デナー化はEMGにおいて自発的な活動(すなわち、フィブリルション[fibs]および正の鋭波[psws])として特徴付けられるが、大きなモーターユニット電位は持続時間が長く、振幅が増加するリナー化は21である。EMGの変化は、変性筋において明らかであるが、筋線維膜電位の基礎となる細胞変化は、単離された筋肉組織2、3、4に関する実験的研究においてのみ実証されている。MVRCは、変性プロセスに関するインビボヒト筋肉膜特性に関するさらなる洞察を提供する。
本稿では、MVRCの方法論について詳しく説明する。また、以前に報告された研究22と、計画された研究に適しているかどうかを判断できる健康な対照被験者からの患者のサブグループにおける神経原性筋肉の変化を要約する。
記録は、ソフトウェア プログラムの一部である記録プロトコルを使用して実行されます。使用される他の装置は、絶縁された線形双極定電流刺激装置、50Hzノイズエリミネーター、絶縁された筋電図アンプ、およびアナログ-デジタルコンバータです。
記録ソフトウェアでプログラムされている MVRC は、高度に自動化された手順ですが、信頼性の高い結果を得るには注意が必要です。記録段階では、針を調整しながら、エンドプレートゾーンまたは神経を刺激しないようにすることが重要である。これは通常、筋肉全体の大きなけいれんを引き起こし、MCVRCの記録中に刺激および/または記録針の変位のリスクを高める。現在までに、この方法?…
The authors have nothing to disclose.
この調査は、主にルンドベック財団(助成金番号R191-2015-931)と助成金番号R290-2018-751)からの2つの助成金によって財政的に支えられました。さらに、この研究は、国際糖尿病性神経障害コンソーシアムの一環として、ノボノルディスク財団チャレンジプログラム(助成金番号NNF14OC0011633)によって財政的に支援されました。
50 Hz Noise Eliminator | Digitimer Ltd | Humbug | |
Analogue-to-Digital Converter | National Instruments | NI-6221 | |
Analysing software program | Digitimer Ltd (copyright Institute of Neurology, University College, London) | QtracP, MANAL9 | |
Disposable concentric needle electrode, 25 mm x 30G | Natus | Dantec DCN | |
Disposable monopolar needle electrode, 25 mm x 26G | Natus | TECA elite | |
Isolated EMG amplifier | Digitimer Ltd | D440 | |
Isolated linear bipolar constant-current stimulator | Digitimer Ltd | DS5 | |
Software and recording protocol | Digitimer Ltd (copyright Institute of Neurology, University College, London) | QtracW software, M3REC3 recording protocol written by Hugh Bostock, Istitute of Neurology, London, UK) |