Ici, nous simulons le vieillissement thermique accéléré du tissu technique et voyons comment ce processus de vieillissement influence les propriétés mécaniques du tissu.
Le tissu architectural AF9032 a été soumis au vieillissement thermique artificiel pour déterminer les changements des paramètres matériels du tissu. La méthode proposée est basée sur l’approche de vieillissement accéléré proposée par Arrhenius. Des échantillons de 300 mm x 50 mm ont été coupés dans la chaîne et remplissent les directions et placés dans une chambre thermique à 80 oC pendant 12 semaines ou à 90 oC jusqu’à 6 semaines. Puis, après une semaine de conditionnement à température ambiante, les échantillons ont été tensionnés uniaxialement à un rythme de tension constant. Expérimentalement, les paramètres ont été déterminés pour les modèles élastiques non linéaires (linéaires en sens de la pièce) et viscoplastiques (Bodner-Partom). Des changements dans ces paramètres ont été étudiés en ce qui concerne la température et la période de vieillissement. Dans les deux cas, la fonction d’approximation linéaire a été appliquée avec succès en utilisant la méthodologie simplifiée d’Arrhenius. Une corrélation a été obtenue pour la direction de remplissage entre les résultats expérimentaux et les résultats de l’approche Arrhenius. Pour la direction de distorsion, les résultats d’extrapolation ont montré quelques différences. Des tendances croissantes et décroissantes ont été observées aux deux températures. La loi D’Arrhenius n’a été confirmée par les résultats expérimentaux que pour la direction de remplissage. La méthode proposée permet de prédire le comportement réel du tissu pendant l’exploitation à long terme, ce qui est un problème critique dans le processus de conception.
Les tissus architecturaux à base de polyester sont couramment utilisés pour la construction de toits suspendus1. Étant relativement bon marché avec de bonnes propriétés mécaniques, ils peuvent être employés dans l’exploitation à long terme (par exemple, le toit suspendu de l’Opéra forestier à Sopot – Pologne). Malheureusement, les conditions météorologiques, les rayons ultraviolets, les raisons biologiques et les fins opérationnelles (pré-stress de saison et relâchement2) peuvent affecter leurs propriétés mécaniques. Les toits suspendus en AF9032 sont généralement des structures saisonnières soumises à des températures élevées (surtout pendant les journées ensoleillées en été), à un prétension régulier et à desserrer. Afin de bien concevoir un toit suspendu, les paramètres du tissu doivent être déterminés non seulement au début de l’exploitation, mais aussi après plusieurs années d’utilisation.
L’analyse du vieillissement mesure l’indicateur de vieillissement et compare les valeurs initiales et finales des paramètres pour évaluer l’impact du vieillissement. Cash et coll.3 ont proposé l’une des méthodes les plus simples par l’analyse comparative de 12 types différents de membranes de toiture. Ces membranes ont été exposées aux intempéries extérieures pendant 2 ou 4 ans. Les auteurs ont utilisé un système de notation de plusieurs propriétés pour évaluer la durabilité du tissu. Afin de fournir une analyse du vieillissement thermique des polymères, le principe de superposition de température temporelle (TTSP) peut être appliqué4. Ce principe stipule que le comportement d’un matériau à basse température et sous un faible niveau de contrainte ressemble à son comportement à haute température et à un niveau de contrainte élevé. Le simple facteur multiplicateur peut être utilisé pour relier les propriétés de température actuelles avec les propriétés à la température de référence. Graphiquement, il correspond au décalage de courbe sur l’échelle de temps de journal. En ce qui concerne la température, deux méthodes sont proposées pour combiner le facteur de décalage et la température de vieillissement : les équations Williams-Landel-Ferry (WLF) et la loi Arrhenius. Les deux méthodes sont incluses dans la norme suédoise ISO 113465 pour estimer la durée de vie et la température maximale opérationnelle des matériaux en caoutchouc, ou vulcanisés et thermoplastiques. Récemment, le vieillissement thermique et la méthodologie Arrhenius ont été utilisés dans la prédiction de durée de vie du câble6,7, tuyaux de chauffage8, et la colle polymère PMMA4. Une extension de la loi Arrhenius est la loi Eyring qui prend en compte d’autres facteurs de vieillissement (par exemple, tension, pression, etc.) 9. Alternativement, d’autres études proposent et vérifient des modèles linéaires simples pour une description du vieillissement (p. ex., vieillissement biocapteur10). Bien que la méthode Arrhenius soit couramment utilisée, il y a discussion sur sa pertinence dans la prédiction à vie de chaque matériel. Par conséquent, la méthode doit être utilisée avec soin, en particulier en termes d’hypothèses initiales et les conditions expérimentales6.
Comme la plupart des polymères, les tissus en polyester utilisés dans la recherche actuelle présentent deux phases de transition distinctes définies par la température de fusion (Tm) et la température de transition du verre (Tg). La température de fusion (Tm) est la température lorsqu’un matériau passe de son état solide au liquide, et la température de transition du verre (Tg) est la limite entre les états de verre et de caoutchouc11. Selon les données du fabricant, le tissu AF9032 est fabriqué à partir de fils de polyester (Tg 100 ‘180 ‘C12, Tm ‘250’290 ‘C13) et revêtement PVC (T g ’80’87‘C 14,15, Tm ‘160 ‘260 ‘C16). La température de vieillissement Tdoit être sélectionnée en dessous de Tg. Pendant les journées ensoleillées, la température sur la surface supérieure d’un toit suspendu peut même atteindre 90 oC; Ainsi, deux températures de vieillissement (80 oC et 90 oC) sont testées ici. Ces températures sont inférieures au fil Tg et proches du revêtement Tg.
La performance du protocole de vieillissement accéléré sur les tissus techniques est présentée dans le travail actuel. Le vieillissement thermique artificiel est utilisé pour prédire les changements des propriétés des matériaux. L’article illustre les routines appropriées d’essais en laboratoire et un moyen d’extrapoler des résultats expérimentaux à relativement court terme.
Cet article incude un protocole expérimental détaillé pour simuler les expériences accélérées en laboratoire sur des tissus renforcés en polyester et enduits de PVC pour des applications de génie civil. Le protocole décrit le cas du vieillissement thermique artificiel uniquement au moyen d’une augmentation de la température ambiante. Il s’agit d’une simplification évidente des conditions météorologiques réelles, car le rayonnement UV et l’influence de l’eau jouent un rôle supplémentaire dans le vieilliss…
The authors have nothing to disclose.
La publication de ces travaux a été appuyée par la Faculté de génie civil et environnemental de l’Université de technologie de Gdansk.
AF 9032 technical fabric | Shelter-Rite Seaman Corporation | ||
knife of scisors | |||
marker | pernament | ||
ruler | |||
Sigma Plot | Systat Software Inc. | v. 12.5 | |
Testing machine Z020 | Zwick Roell | BT1-FR020TN.A50 | |
TestXpert II program | Zwick Roell | v. 3.50 | |
Thermal chamber | Eurotherm Controls | 2408 | |
tubular spanner | 13 mm | ||
Video extensometer | Zwick Roell | BTC-EXVIDEO.PAC.3.2.EN | Instead of video extensometer, a mechanical one can be used |
VideoXtens | Zwick Roell | 5.28.0.0 SP2 |