Les écarts de surface nucléaires sont un outil indispensable pour étudier les événements chromosomiques pendant la méiose. Ici nous démontrons une méthode pour préparer et visualiser des chromosomes méiotiques pendant la prophase I des spermatocytes de poisson zèbre.
La méiose est le processus cellulaire clé nécessaire pour créer des gamètes haploïdes pour la reproduction sexuelle. Les organismes modèles ont joué un rôle déterminant dans la compréhension des événements chromosomiques qui ont lieu pendant la prophase méiotique, y compris les événements d’appariement, de synapse et de recombinaison qui assurent une ségrégation chromosomique appropriée. Bien que la souris ait été un modèle important pour comprendre les mécanismes moléculaires sous-jacents à ces processus, tous les événements méiotiques de ce système ne sont pas analogues à la méiose humaine. Nous avons récemment démontré le potentiel passionnant du poisson zèbre comme modèle de spermatogénèse humaine. Ici nous décrivons, en détail, nos méthodes pour visualiser les chromosomes méiotiques et les protéines associées dans les préparations de propagation de chromosome. Ces préparations ont l’avantage de permettre l’analyse à haute résolution des structures chromosomiques. Tout d’abord, nous décrivons la procédure pour disséquer des testicules du poisson zèbre adulte, suivi de la dissociation cellulaire, de la lyse, et de la diffusion des chromosomes. Ensuite, nous décrivons la procédure pour détecter la localisation des protéines méiotiques de chromosome, par détection d’immunofluorescence, et séquences d’acide nucléique, par hybridation in situ de fluorescence (FISH). Ces techniques constituent un ensemble utile d’outils pour l’analyse cytologique de l’architecture de la chromatine méiotique dans le système de poisson zèbre. Les chercheurs de la communauté des poissons zèbres devraient être en mesure de maîtriser rapidement ces techniques et de les intégrer dans leurs analyses standard de la fonction reproductrice.
La reproduction sexuelle se poursuit par la combinaison de deux gamètes haploïdes, chacun portant la moitié du complément chromosomique d’une cellule somatique. La méiose est une division cellulaire spécialisée qui produit des gamètes haploïdes à travers une série de réplication de l’ADN et deux cycles successifs de ségrégation chromosomique. Dans la prophase I, les chromosomes homologues (homologs) doivent subir l’appariement, la recombinaison et la synapse, ce dernier étant caractérisé par la formation du complexe synaptonemal qui comprend deux axes homologués pontés par le filament transversal, Sycp1 (Figure 1A,B). Le défaut d’exécuter correctement ces processus peut conduire à la production de gamètes aneuploid, qui sont une cause principale de fausses couches chez l’homme1. Notre connaissance de la coordination entre l’appariement, la recombinaison et la synapse a été facilitée par des études dans un large éventail d’organismes, tels que la levure, C. elegans, la souris, et la drosophile, entre autres2. Tandis que le processus général de l’appariement homologue de chromosome suivi de la ségrégation est bien conservé, sa dépendance à la recombinaison et à la synapse et l’ordre de ces événements varie.
La formation de rupture à double brin méiotique (DSB), qui initie une recombinaison homologue, se produit près des télomères regroupés dans le bouquet pendant le leptotene et la synapse s’ensuit peu après3,4. Cette configuration de la formation de l’ASD et de l’initiation à la synapse est également une caractéristique de la méiose masculine chez l’homme, mais pas chez la souris5,6,7,8, suggérant que le poisson zèbre peut servir de modèle pour la spermatogénèse humaine. Il y a également plusieurs avantages pratiques d’étudier la méiose de poisson zèbre. Les mâles et les femelles subissent la gamétogenèse tout au long de l’âge adulte, leurs gonades sont facilement accessibles, et des centaines de descendants sont générés à partir d’une seule croix. En outre, les embryons sont transparents et se développent à l’extérieur, ce qui facilite la détection précoce des aberrations dans le développement embryonnaire en raison de gamètes aneuploides3,9. Les inconvénients de l’utilisation du poisson zèbre sont qu’ils sont lents à atteindre la maturité sexuelle (environ 60 jours) et la quantité de matière nécessaire pour les écarts de surface nucléaire doit être recueillie à partir d’animaux adultes de 10 à 20, selon leur taille.
Les préparations de propagation de chromosome méiotique sont un outil essentiel pour étudier la dynamique de chromosome à travers tous les organismes modèles, puisque les signatures clés de la dynamique méiotique de chromosome peuvent être sondées. Chez le poisson zèbre, les aspects clés de la progression du programme méiotique et de l’organisation nucléaire ont été disséqués par le biais de l’enquête sur les propagations de surface nucléaire, appelées ici les propagations chromosomiques, avec des anticorps pour la détection d’immunofluorescence des protéines et/ou des acides nucléiques par FISH3,4,9,10,11,12. En effet, la localisation polarisée des télomères groupés dans le bouquet peut être préservée dans la préparation de la propagation (Figure 1C). Récemment, nous avons utilisé des propagations du chromosome spermatocyte du poisson zèbre ainsi que des méthodes de détection de fluorescence et de microscopie à super résolution pour élucider la progression détaillée de la dynamique des télomères du poisson zèbre, de l’appariement chromosomique homologue, de la localisation des ruptures à double brin et de la synapse lors des transitions méiotiques clés3. Ici nous présentons des méthodes pour préparer des écarts de chromosome des spermatocytes des testicules de poisson zèbre et par la suite les tacher avec des sondes fluorescentes d’acide nucléique de peptide (PNA) aux séquences répétées de telomere et à la détection d’immunofluorescence des protéines associées de chromosome.
Ici nous décrivons des méthodes pour sonder l’emplacement des télomères et des protéines chromosome-associées dans les écarts de surface nucléaire des spermatocytes isolés des testicules de poisson zèbre. Nous nous attendons à ce que ces méthodes soient applicables pour l’analyse des spermatozoïdes chez d’autres espèces de téléostéos avec ajustement à la taille du testicule.
Alors que seulement quelques anticorps ont été élevés aux protéines méiotiques de poisson …
The authors have nothing to disclose.
Nous remercions Trent Newman et Masuda Sharifi pour leurs commentaires sur le manuscrit et An Nguyen pour avoir aidé à optimiser les méthodes de propagation et de coloration des chromosomes des méiocytes de poissons zèbres. Ce travail a été soutenu par NIH R01 GM079115 attribué à S.M.B.
1.5 mL centrifuge tubes | Several commercial brands available | ||
1.5 mL microcentrifuge tube rack | Several commercial brands available | ||
16% formaldehyde, methanol-free | ThermoFisher Scientific | 28908 | |
2 mL | Several commercial brands available | ||
24 x 50 mm glass coverslips | Corning | 2980-245 | |
24 x 60 mm glasscoverslips | VWR International | 16004-312 | |
50 mL conical centrifuge tubes | ThermoFisher Scientific | 363696 | |
Autoclave bag | Several commercial brands available | Used to make plastic coverslips. | |
Bovine Serum Albumin (BSA) | Fisher Scientific | BP1605-100 | Prepare a 100 mg/ml stock solution in sterile distilled water. |
Cell Strainer, 100 µm | Fisher Scientific | 08-771-19 | |
CF405M goat anti-chicken IgY (H+L), highly cross-adsorbed | Biotium | 203775-500uL | Use at 1:1000 |
Chicken anti-zfSycp1 | Generated by Burgess lab | N/A | Use at 1:100 |
Collagenase from Clostridium histolyticum | Sigma-Aldrich | C0130-500MG | |
Coplin jar | Several commercial brands available | ||
DNase I, grade II from bovine pancreas | Roche Diagnostics | 10104159001 | |
Dulbecco's Modified Eagle Medium (DMEM) | Fisher Scientific | MT10014CV | |
Dumont No. 5 Forceps | Fine Science Tools | 11252-30 | Two are required for dissecting the testes. |
Eppendorf Tubes, 5 mL | VWR International | 89429-308 | |
Formamide | Fisher Scientific | BP228-100 | |
Goat anti-chicken IgY (H+L) secondary antibody, Alexa Fluor 488 | ThermoFisher Scientific | A-11039 | Use at 1:1000 |
Goat anti-chicken IgY (H+L) secondary antibody, Alexa Fluor 594 | ThermoFisher Scientific | A-11042 | Use at 1:1000 |
Goat anti-hDMC1 | Santa Cruz Biotechnology | sc-8973 | Does not work in our hands |
Goat anti-rabbit IgG (H+L) cross-adsorbed secondary antibody, Alexa Fluor 488 | ThermoFisher Scientific | A-11008 | Use at 1:1000 |
Goat anti-rabbit IgG (H+L) cross-adsorbed secondary antibody, Alexa Fluor 594 | ThermoFisher Scientific | A-11012 | Use at 1:1000 |
Goat serum | Sigma-Aldrich | G9023-10mL | |
Heparin sodium salt | Sigma-Aldrich | H3393-100KU | |
Humidity chamber | Fisher Scientific | 50-112-3683 | |
Hybridization Oven | VWR International | 230401V (Model 5420) | |
Incubator Shaker | New Brunswick Scientific | Model Classic C25 | |
KCl | Fisher Scientific | P217-500 | |
Kimwipes | Kimerbly-Clark Professional | 34155 | Used for the humidity chamber |
KH2PO4 | Fisher Scientific | P285-500 | |
Microscope | Several commercial brands available | Any standard microscope capable of at least ~1.65X magnification is sufficient. | |
Microscope slides | Fisher Scientific | 12-544-7 | |
Mouse anti-hamsterSCP3 | Abcam | ab97672 | Does not work in our hands |
Mouse anti-hMLH1 | BD Biosciences | 550838 | Does not work in our hands |
Mouse anti-hRPA | Sigma-Alrich | MABE285 | Does not work in our hands |
Na2HPO4 · 7 H2O | Fisher Scientific | S373-500 | |
NaCl | Fisher Scientific | S271-3 | |
Photo-Flo 200 solution | Electron Microscopy Sciences | 74257 | |
Plastic transfer pipettes | Several commercial brands available | ||
PNA TelC-Alexa647 | PNA Bio Inc | F1013 | Prepare as per manufacturer's instructions. |
PNA TelC-Cy3 | PNA Bio Inc | F1002 | Prepare as per manufacturer's instructions. |
ProLong Diamond Antifade Mountant | ThermoFisher Scientific | P36970 | |
ProLong Diamond Antifade Mountant with DAPI | ThermoFisher Scientific | P36971 | |
Rabbit anti-hRPA | Bethyl | A300-244A | Use at 1:300 |
Rabbit anti-hSCP3 | Abcam | ab150292 | Use at 1:200 |
Rabbit anti-hRad51 | GeneTex | GTX100469 | Use at 1:300 |
Sodium citrate | Fisher Scientific | S279-500 | |
Sucrose | Fisher Scientific | S5-500 | |
Supercut Scissors, 30° angle, 10 cm | Fisher Scientific | 50-822-353 | Can also use any pair of small scissors. |
Sylgard kit | Fisher Scientific | NC9897184 | Prepare as per manufacturer's instructions. |
Triton X-100 | Fisher Scientific | BP151-100 | Dilute in sterile distilled water to make a 20% working solution. Store at room temperature. Triton X-100 forms a precipitate when diluted in water; precipitate dissolves overnight. |
Trypsin | Worthington Biochemical | LS003708 | |
Trypsin inhibitor from chicken egg white | Sigma-Aldrich | T9253-500MG | |
Tween 20 | Bio-Rad | 170-6531 | Dilute in sterile distilled water to make a 20% working solution. Store at room temperature. |
Vannas Spring Scissors – 4 mm (micro scissors) | Fine Science Tools | 15018-10 |