Qui abbiamo presentato un metodo di sequenziamento dell’mRNA a singola cellula multiplexed per profilare l’espressione genica nei tessuti embrionali del topo. Il metodo di sequenziamento dell’mRNA a singola cellula (scRNA-Seq) basato su droplet in combinazione con strategie di multiplexing può profilare singole cellule da più campioni contemporaneamente, riducendo significativamente i costi del reagente e riducendo al minimo gli effetti batch sperimentali.
Il sequenziamento di mRNA a singola cellula ha compiuto progressi significativi negli ultimi anni ed è diventato uno strumento importante nel campo della biologia dello sviluppo. È stato utilizzato con successo per identificare popolazioni di cellule rare, scoprire nuovi geni marcatori e decodificare informazioni spaziali e temporali sullo sviluppo. Il metodo a singola cellula si è evoluto anche dalla tecnologia Fluidigm C1 basata microfluidica alle soluzioni a base di gocciolamento negli ultimi due o tre anni. Qui abbiamo usato il cuore come esempio per dimostrare come profilare le cellule del tessuto embrionale del topo usando il metodo scRNA-Seq basato su gocciolamento. Inoltre, abbiamo integrato due strategie nel flusso di lavoro per profilare più campioni in un unico esperimento. Utilizzando uno dei metodi integrati, abbiamo contemporaneamente profilato più di 9.000 cellule da otto campioni di cuore. Questi metodi saranno preziosi per il campo della biologia dello sviluppo fornendo un modo conveniente per profilare contemporaneamente singole cellule provenienti da diversi background genetici, stadi di sviluppo o posizioni anatomiche.
Il profilo trascrizionale di ogni singola cellula varia tra le popolazioni cellulari durante lo sviluppo embrionale. Sebbene l’ibridazione molecolare singola in situ possa essere utilizzata per visualizzare l’espressione di un piccolo numero di geni1, il sequenziamento dell’mRNA a singola cellula (scRNA-Seq) fornisce un approccio imparziale per illustrare i modelli di espressione dei geni a livello di genoma nei singoli geni. Dopo che è stato pubblicato per la prima volta nel 20092, scRNA-Seq è stato applicato per studiare più tessuti in più fasi di sviluppo negli ultimi anni3,4,5. Inoltre, poiché l’atlante delle cellule umane ha recentemente lanciato i suoi progetti incentrati sullo sviluppo, si prevede che nel prossimo futuro saranno generati più dati di cellule singole provenienti da tessuti embrionali umani.
Il cuore come primo organo a svilupparsi svolge un ruolo critico nello sviluppo embrionale. Il cuore è costituito da più tipi di cellule e lo sviluppo di ogni tipo di cellula è strettamente regolato temporalmente e spazialemente. Negli ultimi anni, l’origine e il lignaggio cellulare delle cellule cardiache nelle fasi iniziali dello sviluppo sono state caratterizzate6, che forniscono un enorme strumento di navigazione utile per comprendere la patogenesi congenita delle malattie cardiache, nonché per sviluppare metodi più tecnologicamente avanzati per stimolare la rigenerazione cardiomiocita7.
Lo scRNA-Seq ha subito una rapida espansione negli ultimi anni8,9,10. Con i metodi appena sviluppati, la progettazione e l’analisi di esperimenti a cella singola è diventato più realizzabile11,12,13,14. Il metodo qui presentato è una procedura commerciale basata sulle soluzioni di gocciolina (vedi Tabella dei materiali)15,16. Questo metodo è dotato di catturare celle e insiemi di perline codificate in modo univoco in una goccia di emulsione olio-acqua sotto il controllo di un sistema di controllo microfluidico. La velocità di caricamento delle celle nelle goccioline è estremamente bassa in modo che la maggior parte delle emulsioni delle goccioline contengano una sola cella17. L’ingegnoso design della procedura deriva dalla separazione di una singola cellula in emulsioni di goccioline che si verificano contemporaneamente con la codifica a barre, che consente l’analisi parallela di singole cellule utilizzando RNA-Seq su una popolazione eterogenea.
L’incorporazione di strategie di multiplexing è una delle aggiunte importanti al tradizionale flusso di lavoro a cella singola13,14. Questa aggiunta è molto utile per eliminare i doppietti cellulari, ridurre i costi sperimentali ed eliminare gli effetti di lotto18,19. Una strategia di codifica a barre basata su lipidi e una strategia di codifica a barre basata su anticorpi (vedi Tabella dei materiali) sono i due metodi di multiplexing per lo più utilizzati. I codici a barre specifici vengono utilizzati per etichettare ogni campione in entrambi i metodi e i campioni etichettati vengono quindi miscelati per l’acquisizione di una singola cella, la preparazione della libreria e la sequenza. Successivamente, i dati di sequenza in pool possono essere separati analizzando le sequenze di codici a barre (Figura 1)19. Tuttavia, esistono differenze significative tra i due metodi. La strategia di codifica a barre basata su lipidi si basa su oligonucleotidi modificati ai lipidi, che non è stato trovato per avere preferenze di tipo di cellula. Mentre la strategia di codifica a barre basata su anticorpi può rilevare solo le cellule che esprimono le proteine dell’antigene19,20. Inoltre, ci vogliono circa 10 min per macchiare i lipidi ma 40 min per macchiare gli anticorpi (Figura 1). Inoltre, gli oligonucleotidi modificati dai lipidi sono più economici degli oligonucleotidi coniugati da anticorpi, ma non disponibili in commercio al momento della scrittura di questo articolo. Infine, la strategia basata sui lipidi può multiplex 96 campioni in un esperimento, ma la strategia basata su anticorpi attualmente può essere solo multiplex 12 campioni.
Il numero di cellule raccomandato al multiplex in un singolo esperimento dovrebbe essere inferiore a 2,5 x 104,altrimenti porterà a un’alta percentuale di doppietti cellulari e a una potenziale contaminazione da mRNA ambientali. Attraverso le strategie di multiplexing, il costo dell’acquisizione di una singola cella, della generazione di cDNA e della preparazione della libreria per più campioni sarà ridotto al costo di un campione, ma il costo di sequenziamento rimarrà lo stesso.
In questo studio, abbiamo dimostrato un protocollo per analizzare i profili trascrizionali a singola cellula. Abbiamo anche fornito due metodi opzionali ai campioni multiplex nel flusso di lavoro scRNA-Seq. Entrambi i metodi si sono dimostrati fattibili in vari laboratori e hanno fornito soluzioni per eseguire un esperimento a cella singola conveniente e privo di effetti in batch18,26.
Ci sono alcuni passaggi che dovrebbero essere segu…
The authors have nothing to disclose.
Ringraziamo David M. Patterson e Christopher S. McGinnis del laboratorio Dr. .ev J. Gartner per la loro fornitura gentile di reagenti di codifica a barre a base di lipidi e suggerimenti sui passaggi sperimentali e l’analisi dei dati. Questo lavoro è stato fondato dai National Institutes of Health (HL13347202).
10% Tween-20 | Bio-Rad | 1610781 | |
10x Chip Holder | 10x Genomics | 120252 330019 | |
10x Chromium Controller | 10x Genomics | 120223 | |
10x Magnetic Separator | 10x Genomics | 120250 230003 | |
10x Vortex Adapter | 10x Genomics | 330002, 120251 | |
10x Vortex Clip | 10x Genomics | 120253 230002 | |
4200 TapeStation System | Agilent | G2991AA | |
Agilent High Sensitivity DNA Kit | Agilent | 5067-4626 | University of Pittsburgh Health Sciences Sequencing Core |
Barcode Oligo | Integrated DNA Technologies | Single-stranded DNA | 25 nmol |
Buffer EB | Qiagen | 19086 | |
CD1 mice | Chales River | Strain Code 022 | ordered pregnant mice |
Centrifuge 5424R | Appendorf | 2231000214 | |
Chromium Chip B Single Cell Kit, 48 rxns | 10x Genomics | 1000073 | Store at ambient temperature |
Chromium i7 Multiplex Kit, 96 rxns | 10x Genomics | 120262 | Store at -20 °C |
Chromium Single Cell 3' GEM Kit v3,4 rxns | 10x Genomics | 1000094 | Store at -20 °C |
Chromium Single Cell 3' Library Kit v3 | 10x Genomics | 1000095 | Store at -20 °C |
Chromium Single Cell 3' v3 Gel Beads | 10x Genomics | 2000059 | Store at -80 °C |
Collagenase A | Sigma/Millipore | 10103578001 | Store powder at 4 °C, store at -20 °C after it dissolves |
Collagenase B | Sigma/Millipore | 11088807001 | Store powder at 4 °C, store at -20 °C after it dissolves |
D1000 ScreenTape | Agilent | 5067-5582 | University of Pittsburgh Health Sciences Sequencing Core |
DNA LoBind Tube Microcentrifuge Tube, 1.5 mL | Eppendorf | 022431021 | |
DNA LoBind Tube Microcentrifuge Tube, 2.0 mL | Eppendorf | 022431048 | |
Dynabeads MyOne SILANE | 10x Genomics | 2000048 | Store at 4 °C, used in Beads Cleanup Mix (Table 1) |
DynaMag-2 Magnet | Theromo Scientific | 12321D | |
Ethanol, Pure (200 Proof, anhydrous) | Sigma | E7023-500mL | |
Falcon 15mL High Clarity PP Centrifuge Tube | Corning Cellgro | 14-959-70C | |
Falcon 50mL High Clarity PP Centrifuge Tube | Corning Cellgro | 14-959-49A | |
Fetal Bovine Serum, qualified, United States | Fisher Scientific | 26140079 | Store at -20 °C |
Finnpipette F1 Multichannel Pipettes, 10-100μl | Theromo Scientific | 4661020N | |
Finnpipette F1 Multichannel Pipettes, 1-10μl | Theromo Scientific | 4661000N | |
Flowmi Cell Strainer | Sigma | BAH136800040 | Porosity 40 μm, for 1000 uL Pipette Tips, pack of 50 each |
Glycerin (Glycerol), 50% (v/v) | Ricca Chemical Company | 3290-32 | |
HBSS, no calcium, no magnesium | Thermo Fisher Scientific | 14170112 | |
Human TruStain FcX (Fc Receptor Blocking Solution) | BioLegend | 422301 | Add 5 µl of Human TruStain FcX per million cells in 100 µl staining volume |
Isopropanol (IPA) | Fisher Scientific | A464-4 | |
Kapa HiFi HotStart ReadyMix (2X) | Fisher Scientific | NC0295239 | Store at -20 °C, used in Lipid-tagged barcode library mix (Table 1) |
Lipid Barcode Primer (Multi-seq Primer) | Integrated DNA Technologies | Single-stranded DNA | 100 nmol |
Low TE Buffer (10 mM Tris-HCl pH 8.0, 0.1 mM EDTA) | Thermo Fisher Scientific | 12090-015 | |
MasterCycler Pro | Eppendorf | 950W | |
Nuclease-Free Water (Ambion) | Thermo Fisher Scientific | AM9937 | |
PCR Tubes 0.2 ml 8-tube strips | Eppendorf | 951010022 | |
Phosphate-Buffered Saline (PBS) 1X without calcium & magnesium | Corning Cellgro | 21-040-CV | |
Phosphate-Buffered Saline (PBS) with 10% Bovine Albumin (alternative to Thermo Fisher product) | Sigma-Aldrich | SRE0036 | |
Pipet 4-pack (0.1–2.5μL, 0.5-10μL, 10–100μL, 100–1,000μL variable-volume pipettes | Fisher Scientific | 05-403-151 | |
Selection reagent (SPRIselect Reagent Kit) | Beckman Coulter | B23318 (60ml) | |
Template Switch Oligo | 10x Genomics | 3000228 | Store at -20 °C, used in Master Mix (Table 1) |
The antibody based barcoding strategy is also known as Cell Hashing | |||
The cell browser is Loup Cell Browser | 10x Genomics | https://support.10xgenomics.com/single-cell-gene-expression/software/visualization/latest/what-is-loupe-cell-browser | |
The commercial available analysis pipline in step 8.1 is Cell Ranger | 10x Genomics | https://support.10xgenomics.com/single-cell-gene-expression/software/pipelines/latest/what-is-cell-ranger | |
The lipid based barcoding strategy is also known as MULTI-seq | |||
The well maintained R platform is Seurat V3 | satijalab | https://satijalab.org/seurat/ | |
TipOne RPT 0.1-10/20 ul XL ultra low retention filter pipet tip | USA Scientific | 1180-3710 | |
TipOne RPT 1000 ul XL ultra low retention filter pipet tip | USA Scientific | 1182-1730 | |
TipOne RPT 200 ul ultra low retention filter pipet tip | USA Scientific | 1180-8710 | |
TotalSeq-A0301 anti-mouse Hashtag 1 Antibody | BioLegend | 155801 | 0.1 – 1.0 µg of antibody in 100 µl of staining buffer for every 1 million cells |
TotalSeq-A0302 anti-mouse Hashtag 2 Antibody | BioLegend | 155803 | 0.1 – 1.0 µg of antibody in 100 µl of staining buffer for every 1 million cells |
TotalSeq-A0302 anti-mouse Hashtag 3 Antibody | BioLegend | 155805 | 0.1 – 1.0 µg of antibody in 100 µl of staining buffer for every 1 million cells |
TrueSeq RPI primer | Integrated DNA Technologies | Single-stranded DNA | 100 nmol, used in Lipid-tagged barcode library mix (Table 1) |
Trypan Blue Solution, 0.4% | Fisher Scientific | 15250061 | |
Trypsin-EDTA (0.25%), phenol red | Fisher Scientific | 25200-056 | |
Universal I5 | Integrated DNA Technologies | Single-stranded DNA | 100 nmol |