Here we present a screening method for membrane-bound pyrophosphatase (from Thermotoga maritima) inhibitors based on the molybdenum blue reaction in a 96 well plate format.
Membrane-bound pyrophosphatases (mPPases) are dimeric enzymes that occur in bacteria, archaea, plants, and protist parasites. These proteins cleave pyrophosphate into two orthophosphate molecules, which is coupled with proton and/or sodium ion pumping across the membrane. Since no homologous proteins occur in animals and humans, mPPases are good candidates in the design of potential drug targets. Here we present a detailed protocol to screen for mPPase inhibitors utilizing the molybdenum blue reaction in a 96 well plate system. We use mPPase from the thermophilic bacterium Thermotoga maritima (TmPPase) as a model enzyme. This protocol is simple and inexpensive, producing a consistent and robust result. It takes only about one hour to complete the activity assay protocol from the start of the assay until the absorbance measurement. Since the blue color produced in this assay is stable for a long period of time, subsequent assay(s) can be performed immediately after the previous batch, and the absorbance can be measured later for all batches at once. The drawback of this protocol is that it is done manually and thus can be exhausting as well as require good skills of pipetting and time keeping. Furthermore, the arsenite-citrate solution used in this assay contains sodium arsenite, which is toxic and should be handled with necessary precautions.
Approximately 25% of the total cellular proteins are membrane proteins and about 60% of them are drug targets1,2. One of the potential drug targets3, membrane-bound pyrophosphatases (mPPases), are dimeric enzymes that pump proton and/or sodium ion across the membrane by hydrolysis of pyrophosphate into two orthophosphates4. mPPases can be found in various organisms5 such as bacteria, archaea, plants, and protist parasites, with the exception of humans and animals4. In protist parasites, for example Plasmodium falciparum, Toxoplasma gondii and Trypanosoma brucei, mPPases are essential for the parasite virulence6 and knockout of this expression in the parasites lead to failure in maintaining intracellular pH upon exposure to the external basic pH7. Due to their importance and lack of homologous protein present in vertebrates, mPPases can be considered as potential drug targets for protistal diseases3.
The in vitro screening of mPPase inhibitors in this work is based on a TmPPase model system. TmPPase is a sodium ion pumping and potassium ion dependent mPPase from T. maritima and has its optimum activity at 71 °C8. Benefits of this enzyme are for example its ease in production and purification, good thermal stability and high specific activity. TmPPase shows both high similarity in addition to the complete conservation of the position as well as identity of all catalytic residues to the protist mPPases3,9 and to the solved structure of Vigna radiata10 mPPase. The available structures of TmPPase in different conformations are also useful for structure-based drug design experiment (as virtual screening and de novo design).
Here we report a detailed protocol for screening of TmPPase inhibitors in a 96 well plate format (Figure 1). The protocol is based on the colorimetric method of the molybdenum blue reaction, which was first developed by Fiske and Subbarow11. This method involves the formation of 12-phosphomolybdic acid from orthophosphate and molybdate under acidic conditions, which is then reduced to give characteristic blue-colored phosphomolybdenum species12.
1. Protein preparation
NOTE: The expression and purification of TmPPase has been described elsewhere13.
2. Compound preparation
3. Reagents for the assay preparation
4. Activity assay for one 96 well plate
NOTE: See Figure 1 for the schematic workflow of the assay.
5. Result analysis
In this protocol, eight compounds (1−8) were tested (Figure 2A) together with IDP, a common inhibitor of pyrophosphatases, as a positive control. Each compound was tested at three different concentrations (1 µM, 5 µM and 20 µM) in triplicate. The workflow of the screening is depicted in Figure 1, starting from sample and reagent preparation until the absorbance measurement at 860 nm.
At the end of this protocol, after the addition of solution A + B and arsenite-citrate, the solutions develop a stable blue color with the maximum absorption at 709 nm and 860 nm14 due to the complex formation of phosphate ions with molybdate that can be observed and shows the occurrence of the enzymatic reaction. For this experiment, we use the absorbance at 860 nm for the measurement of Pi amount released as it has better detection limit and sensitivity compared to the absorbance at 709 nm15. The blue color is fully developed in 30 min of incubation at room temperature and stable for at least 5 h14. The assay has the sensitivity down to Pi concentration of 10 µM and the absorbance is linear over a concentration range of 10−800 µM14. In the representative result here, wells E1−E3 (Figure 2C) contain the reaction mixture without inhibitor and the blue solution can be observed at the end of the assay. This can also be observed at low compound concentrations where complete inhibition has not been reached, as in wells F1−F3 for IDP and wells A4−A6 for compound 1 (ATC, a recently known uncompetitive inhibitor of TmPPase9) at the concentration of 2.5 µM and 1 µM, respectively. The higher concentration of IDP and compound 1, the less to no blue color can be observed (G1−G3 and H1−H3 for IDP and B4−B6 and C4−C6 for compound 1) indicating inhibition of the enzymatic activity. All three concentrations of non-inhibiting compounds (2, 3, and 8) displayed the same blue color intensity as wells E1−E3 without any inhibitor (Figure 2C).
After the absorbance measurement at 860 nm, the data can be processed and analyzed (see protocol section 5). Figure 2D shows the calibration plot of Pi standard with its linear fitting (y = 0.0576x + 0.0019; r2 = 0.999). Figure 3 shows the plot of enzymatic activity (%) against the concentration of each tested compound. For compounds with inhibition activity, a nonlinear curve fitting is also shown. IDP, used as a positive control, clearly shows a decrease in activity at higher concentration. The IC50 (estimate) calculated based on three different concentrations is 88.2 µM (Table 1), which is similar to the previous measurement (80.0 µM) with eight concentration points14. Compounds 1, 4, 5, 6, and 7 showed a similar trend as IDP since the concentration increased with the IC50 (estimate) of approximately 1.3 µM, 7.4 µM, 19.0 µM, 37.4 µM, and 156.1 µM, respectively (Table 1). For compounds 2, 3, and 8 no reduction in activity or inhibition can be observed at the assay concentrations. An additional assay with eight concentration points can be done to generate precise IC50. Figure 4 shows the inhibition curve for compounds 1, 5, 6, 7 and 8 with an IC50 of 1.7 µM, 21.4 µM, 58.8 µM, 239.0 µM and >500 µM, respectively9.
Figure 1: A schematic workflow of TmPPase inhibition assay in a 96 well plate format. The red numbering shows the steps of the assay according to the protocol and the blue arrows show the interval order. Please click here to view a larger version of this figure.
Figure 2: Samples, their arrangement and color development in a 96 well plate. (A) The structures of compounds 1−8 used for the assay. The inhibition activity of these compounds has been reported in Vidilaseris et al.9. (B) Sample arrangement. (C) Color development, 30 min after the addition of arsenite-citrate solution. The concentrations of control inhibitor (IDP) and samples used, arranged from the top to the bottom, are 2.5 µM, 25 µM, and 250 µM concentration and 1 µM, 5 µM, and 20 µM concentration, respectively. The intensity of the blue color corresponds to the amount of Pi released due to the enzymatic reaction and the lack of color corresponds to no enzymatic reaction. (D) Calibration curve for Pi standard (nmol) against A860 with linear fitting (y = 0.0576x + 0.0019; r2 = 0.999). Please click here to view a larger version of this figure.
Figure 3: Curve of the TmPPase percent activity for three different inhibitor concentrations. The nonlinear regression curves to calculate the IC50 (estimate) are shown for IDP as well as for compounds 1, 4, 5, 6 and 7 but not for compounds 2, 3, and 8 as they were not inhibiting TmPPase activity at the assay concentrations. The logIC50 and IC50 (estimate) of each compound is shown in Table 1. All data are shown as mean ± SD with three replicates. Please click here to view a larger version of this figure.
Figure 4: Inhibition curve from eight concentration points of compounds 1, 5, 6, 7 and 8. This figure is taken from Vidilaseris et al.9 with slight modification. All data are shown as mean ± SD with three replicates. Please click here to view a larger version of this figure.
Sample | LogIC50 | IC50 (estimate) (µM) |
IDP | 1.95 ± 0.0142 | 87.9 ± 2.46 |
1 | 0.112 ± 0.0274 | 1.29 ± 0.0816 |
2 | − | no inhibition |
3 | − | no inhibition |
4 | 0.870 ± 0.0447 | 7.39 ± 0.760 |
5 | 1.28 ± 0.0296 | 19.0 ± 1.29 |
6 | 1.57 ± 0.0846 | 37.4 ± 7.29 |
7 | 2.19 ± 0.366 | 156 ± 131 |
8 | − | no inhibition |
Table 1: LogIC50 and IC50 (estimate) of IDP and compounds 1−8 based on the data from Figure 3.
Here we report a detailed protocol for simple screening of inhibitors for membrane-bound pyrophosphatase from T. maritima in a 96 well plate format based on Vidilaseris et al.14. This protocol is inexpensive and based on 12-phosphomolybdic acid, which is formed from orthophosphate and molybdate under acidic conditions and reduced to phosphomolybdenum species with a distinct blue color12. This method is preferred over other protocols, such as the more sensitive malachite green assay16, because this method does not show interference in the presence of high phospholipid concentration which is required for TmPPase reactivation14.
The workflow of the screening protocol is depicted in Figure 1 and this process can be fully accomplished in 1 h. This protocol is optimized for TmPPase with the optimal working temperature at 71 °C and a 5 min reaction time. As water will evaporate at this temperature from the reaction mixture, an adhesive sealing sheet (sliced to fit and cover the strips) is applied to prevent evaporation14 and the evaporated water is simply recollected with centrifugation. The 5 min incubation time is chosen as it is still in the linear range of the enzymatically released phosphate and sufficient for reliable screening14. In this protocol, the timing and pipetting skills are important factors to obtain a good and reliable result. Addition of reagents during the assay with 20 s interval between strips is an optimized timing option for ease of performing the subsequent steps.
For different mPPases, the optimum temperature and incubation time should be determined separately prior to use in the inhibition assay. The enzyme reactivation protocol above is optimized for TmPPase and other mPPases might need a different reactivation protocol. For example, DDM should not be added for reactivation of mPPase from Pyrobaculum aerophilum as it will decrease its enzymatic activity17. As the enzyme will become less active if prepared well in advance, the addition of reactivated enzyme should be added to the reaction mixture shortly before the assay is initiated. After addition of the arsenite-citrate solution the reaction product is stable for at least 5 h14. Therefore, the next batch of the assay can be performed immediately, and the absorbance measurement can be done later to all batches at once.
The authors have nothing to disclose.
This work was supported by the grants from the Jane and Aatos Erkko Foundation and the BBSRC (BB/M021610) to Adrian Goldman, the Academy of Finland (No. 308105) to Keni Vidilaseris, (No. 310297) to Henri Xhaard, and (No. 265481) to Jari Yli-Kauhaluoma, and the University of Helsinki Research Funds to Gustav Boije af Gennäs. The authors thank Bernadette Gehl for her technical help during the project.
Adhesive sealing sheet | Thermo Scientific | AB0558 | |
Ammonium heptamolybdate tetrahydrate | Merck | F1412481 636 | |
Ascorbic acid | Sigma-Aldrich | 95212-250G | |
BioLite 96Well Multidish | Thermo Scientific | 130188 | |
Dimethyl sulfoxide (DMSO) | Merck | 1167431000 | |
8-well PCR Tube Strips 0.2 ml without caps (120) | Nippon genetics | FG-028 | |
Dodecyl maltoside (DDM) | Melford | B2010-100G | |
Ethanol | Merck | 1009901001 | |
Glacial acetic acid | Merck | 1000631011 | |
Hydrochloric acid | Sigma-Aldrich | 258148-500ML | |
Imidodiphosphate sodium salt | Sigma-Aldrich | I0631-1G | |
L-α-Phosphatidyl choline from soybean lecithin | Sigma | 429415-100GM | |
Magnesium chloride | Sigma-Aldrich | 8147330500 | |
Multiplate 96-Well PCR Plates | Bio-Rad | MLL9651 | |
MultiSkan Go | Thermo Scientific | 10680879 | |
Nepheloskan Ascent (Type 750) | Labsystems | ||
Polystyrene Petri dish (size 150 mm x 15 mm) | Sigma-Aldrich | P5981-100EA | |
Potassium chloride | Merck | 104936 | |
Prism 6 software | GraphPad | ||
QBT2 Heating block | Grant Instruments | ||
Sodium meta-arsenite | Fisher Chemical | 12897692 | |
Sodium phosphate dibasic (Pi) | Sigma | S0876-1KG | |
Sodium pyrophosphate dibasic | Fluka | 71501-100G | |
Trisodium citrate dihydrate | Fluka | 71404-1KG |