Viene segnalato un protocollo per la progettazione razionale di un filtro elettroattivo a doppia funzionalità costituito da nanotubi di carbonio e nanofili titanati e viene presentato il loro applicazioni ambientale verso l’ossidazione e il sequestro di Sb(III).
Abbiamo progettato un metodo facile per sintetizzare un filtro elettrochimico a doppia funzionalità composto da due materiali 1D: nanofili titanati e nanotubi di carbonio. Il filtro ibrido titanate-CNT è stato preparato da una sonicazione accoppiata con un percorso di post-filtrazione. A causa degli effetti sinergici dell’aumento del numero di siti di sorgamene esposti, la reattività elettrochimica, le piccole dimensioni dei pori della rete titanata-CNT abbinate a un progetto flow-through, l’ossidazione e il sequestro simultanei di Sb(III) possono essere Raggiunto. La tecnologia spettrometrica a fluorescenza atomica ha dimostrato che il campo elettrico applicato accelera il tasso di conversione Sb(III) e che gli Sb(V) ottenuti sono stati adsorbiti efficacemente dai nanofili titanati a causa della loro specificità Sb. Questo protocollo fornisce una soluzione pratica per la rimozione di Sb(III) altamente tossici e di altri ioni metallici pesanti simili.
Recentemente, l’inquinamento ambientale causato dall’antimonio emergente (Sb) ha attirato molta attenzione1,2. Studi approfonditi dimostrano che i composti Sb pongono un’elevata tossicità per l’uomo e i microrganismi, anche se presenti in basse concentrazioni nell’ambiente3,4. Ancora peggio, i metodi fisici o biologici convenzionali sono di solito inefficaci per rimuovere questi contaminanti emergenti a causa delle loro basse concentrazioni edell’elevatatossicità 5 . Le specie più abbondanti di Sb sono Sb(V) e Sb(III), di cui quest’ultima forma è più tossica.
Tra i metodi di trattamento attualmente disponibili, l’adsorbimento è creduto per essere un’alternativa promettente e fattibile a causa della sua alta efficienza, basso costo, e semplicità6,7. Fino ad ora, sono stati sviluppati diversi sorbenti su nanoscala con microstrutture regolabili, grandi superfici specifiche e specificità Sb, come TiO28, MnO29, titanato10, ferro zerovalente11, ossidi di ferro e altri ossidi metallici binari12,13. Un problema comune quando si tratta di adsorbenti su nanoscala è il problema post-separazione dovuto alle loro piccole dimensioni di particelle. Una strategia per risolvere questo problema consiste nel caricare questi nanosorbenti su supporti macro/microscala14. Un’altra questione impegnativa che limita l’ampia applicazione della tecnologia adsorvanistica è la scarsa concentrazione di composti/molecole bersaglio15. Questo problema può essere parzialmente affrontato adottando una progettazione e una convenzione della membrana potrebbe migliorare significativamente il trasporto di massa. Recenti sforzi sono stati dedicati allo sviluppo di sistemi di trattamento avanzati che combinano adsorbizione e ossidazione in un’unica unità per una rimozione efficace di Sb(III). Qui, mostriamo come un nanotubi elettroattivo titanato-carbonio (titanate-CNT) sia stato progettato e applicato razionalmente per l’adsorbimento e il sequestro di Sb(III) tossici. Ottimizzando la quantità di carico in titanato, la tensione applicata e la portata, dimostriamo come la velocità di ossidazione di Sb(III) e l’efficienza del sequestro possano essere adattate in modo corrispondente. Anche se la fabbricazione e l’applicazione del filtro elettroattivo è mostrata in questo protocollo, disegni simili possono applicarsi anche al trattamento di altri ioni metallici pesanti.
Cambiamenti minori nel processo di fabbricazione e reagenti possono causare cambiamenti significativi nella morfologia e nelle prestazioni del sistema finale. Ad esempio, il tempo idrotermale, la temperatura e la purezza chimica hanno dimostrato di influenzare le microstrutture di questi adsorbenti su nanoscala. La portata della soluzione adsorbate determina anche il tempo di residenza all’interno di un sistema di flusso e l’efficienza di rimozione dei composti bersaglio. Con una chiara identificazione di questi parametri di impatto chiave, è possibile garantire un protocollo di sintesi riproducibile e ottenere un’efficienza di rimozione stabile di Sb(III). Questo protocollo mira a fornire un’esperienza dettagliata sulla fabbricazione di filtri ibridi a doppio funzionamento e sulle loro applicazioni verso la rimozione di ioni metallici pesanti tossici in modo flusso.
La chiave di questa tecnologia è fabbricare un filtro ibrido elettroattivo conduttivo e poroso con un’elevata specificità Sb. Per fare questo, particolare attenzione dovrebbe essere pagata al processo di fabbricazione. La quantità di nanofili titanati deve essere controllata con precisione a causa dell’effetto “trade-off” tra la conduttività elettrica del filtro e la superficie.
Inoltre, va anche notato che è necessaria una corretta tensione applicata. Una volta che la tensione applicata …
The authors have nothing to disclose.
Questo lavoro è stato sostenuto dalla Natural Science Foundation di Shanghai, Cina (n. 18-R1401000), dal programma Shanghai Pujiang (n. 18PJ1400400) e dal National Key Research and Development Program of China (n. 2018YFF0215703).
Atomic fluorescence spectrometer | Ruili Co., Ltd | ||
Carbon nanotubes (CNT) | TimesNano Co., Ltd | ||
DC power supply | Dahua Co., Ltd | ||
Ethanol, 96% | Sinopharm | ||
Hydrochloric acid, 36% | Sinopharm | Corrosive | |
L-antimony potassium tartrate | Sigma-Aldrich | Highly toxic | |
N-methyl-2-pyrrolidinone (NMP), 99.5% | Sinopharm | Highly toxic | |
Potassium hydroxide, 85% | Sinopharm | Corrosive | |
Peristaltic pump | Ismatec Co., Ltd | ||
Titanium dioxide powders | Sinopharm |