Этот протокол адаптирует измерения клеточного цикла для использования в платформе массовой цитометрии. Благодаря многопараметрическим возможностям массовой цитометрии прямое измерение включения йода позволяет идентифицировать клетки в S-фазе, в то время как маркеры внутриклеточного цикла позволяют характеризовать состояние каждого клеточного цикла в различных экспериментальных условиях.
Регуляция фазы клеточного цикла является важным аспектом клеточной пролиферации и гомеостаза. Нарушение регуляторных механизмов, регулирующих клеточный цикл, является особенностью целого ряда заболеваний, в том числе онкологических. Изучение клеточного цикла требует способности определять количество клеток в каждой части прогрессии клеточного цикла, а также четко разграничивать каждую фазу клеточного цикла. Появление массовой цитометрии (MCM) обеспечивает огромный потенциал для высокопроизводительного анализа отдельных клеток посредством прямых измерений элементарных изотопов, а разработка метода измерения состояния клеточного цикла с помощью MCM еще больше расширяет полезность MCM. Здесь мы описываем метод, который непосредственно измеряет 5-йодо-2′-дезоксиуридин (IdU), аналогичный 5-бром-2′-дезоксиуридину (BrdU), в системе MCM. Использование этого MCM на основе IdU дает несколько преимуществ. Во-первых, IdU быстро включается в ДНК во время ее синтеза, что позволяет надежно измерять клетки в S-фазе с инкубацией всего за 10-15 минут. Во-вторых, IdU измеряется без необходимости вторичных антител или необходимости деградации ДНК. В-третьих, окрашивание IdU можно легко комбинировать с измерением циклина B1, фосфорилированного белка ретинобластомы (pRb) и фосфорилированного гистона H3 (pHH3), что в совокупности обеспечивает четкое разграничение пяти фаз клеточного цикла. Комбинация этих маркеров клеточного цикла с большим количеством параметров, возможных с MCM, позволяет комбинировать их со многими другими показателями.
Масс-цитометрия позволяет обнаруживать около 40 параметров, используя преимущества высокого разрешения и количественного характера масс-спектроскопии. Антитела, меченные металлами, используются вместо флуорофорных конъюгированных антител, которые допускают большее количество каналов и производят минимальный побочный эффект 1,2. MCM имеет преимущества и недостатки в отношении анализа клеточного цикла по сравнению с проточной цитометрией. Одним из основных преимуществ MCM является то, что большое количество параметров позволяет одновременно измерять состояние клеточного цикла в большом количестве иммунофенотипически различных типов Т-клеток в очень гетерогенных образцах. MCM успешно используется для измерения состояния клеточного цикла при нормальном кроветворении в костном мозгечеловека 3 и трансгенных мышиных моделях дефицита теломеразы4. Анализ состояния клеточного цикла при остром миелоидном лейкозе (ОМЛ) показал, что клеточный цикл коррелирует с известными реакциями на клиническую терапию, обеспечивая понимание in vivo функциональных характеристик, которые могут информировать о выборе терапии5. Вторым преимуществом массового цитометрического анализа клеточного цикла является возможность измерения большого количества других функциональных маркеров, которые могут быть коррелированы с состоянием клеточного цикла. Недавняя работа смогла коррелировать синтез белка и РНК с состоянием клеточного цикла с помощью IdU и меченных металлами антител к BRU и рРНК6. Такой высокопараметрический анализ, измеряющий состояние клеточного цикла в многочисленных популяциях в континууме дифференцировки, был бы практически невозможен с современной технологией проточной цитометрии. Основным недостатком MCM является отсутствие сопоставимых красителей ДНК или РНК, используемых во флуоресцентной проточной цитометрии (например, DAPI, Hoechst, Pyronin Y и т. Д.). Флуоресцентные красители могут давать относительно точные измерения содержания ДНК и РНК, но эта точность возможна только благодаря изменениям флуоресцентных свойств этих красителей, которые происходят при интеркаляции между нуклеотидными основаниями. Таким образом, анализ MCM не может измерить содержание ДНК или РНК с аналогичной точностью. Вместо этого массовый цитометрический анализ клеточного цикла основан на измерениях белков, связанных с состоянием клеточного цикла, таких как циклин B1, фосфорилированный белок ретинобластомы (pRb) и фосфорилированный гистон H3 (pHH3) в сочетании с прямым измерением атома йода от включения IdU в клетки S-фазы. Эти два подхода к измерению дают очень похожие результаты во время нормальной клеточной пролиферации, но потенциально могут быть диссонирующими, когда прогрессирование клеточного цикла нарушается.
Измерение количества клеток в каждой фазе клеточного цикла важно для понимания нормального развития клеточного цикла, а также нарушения клеточного цикла, которое обычно наблюдается при раке и иммунологических заболеваниях. MCM обеспечивает надежное измерение внеклеточных и внутриклеточных факторов с использованием метенных металлом антител; однако измерение S-фазы было ограничено, поскольку интеркалятор ДНК на основе иридия не мог различать 2N и 4N ДНК. Чтобы определить фазы клеточного цикла, Бехбехани разработал метод, в котором используется IdU с массой 127, который попадает в диапазон массового цитометра и позволяет напрямую измерять клетки в S-фазе3. Это прямое измерение обходит необходимость во вторичных антителах или использовании денатурирующих ДНК агентов, таких как кислота или ДНКаза. В сочетании с маркерами внутриклеточного цикла он обеспечивает высокое разрешение распределения клеточного цикла в экспериментальных моделях.
Этот протокол адаптирует измерения клеточного цикла из общих протоколов проточной цитометрии для MCM. Наши методы обеспечивают удобный и простой способ включения параметров клеточного цикла. Для включения образцов IdU in vitro требуется всего от 10 до 15 минут инкубации при 37 ° C, что короче, чем у большинства протоколов окрашивания BrdU, которые рекомендуют время инкубации в несколько часов 3,7. Образцы, включенные в IdU и BrdU, могут быть зафиксированы с помощью протеомного стабилизатора, а затем храниться в течение некоторого времени в морозильной камере с температурой -80 °C. Это позволяет архивировать большое количество образцов, окрашенных IdU, для пакетного анализа без снижения качества образцов.
Представленные здесь примеры демонстрируют, как использовать платформу MCM для анализа распределения клеточного цикла. Также было продемонстрировано, что анализ клеточного цикла чувствителен к экспериментальным условиям, таким как время и температура, что является важным соображение…
The authors have nothing to disclose.
Авторы хотели бы поблагодарить Палака Сехри, Хусама Алхалайле, Сяочи Чанга и Джастина Либергера за их экспериментальную поддержку. Эта работа была поддержана Программой стипендий Pelotonia. Любые мнения, выводы и заключения, выраженные в этом материале, принадлежат автору (авторам) и не обязательно отражают мнения Программы стипендий Pelotonia».
Bovine Serum Albumin (BSA) | Sigma | A3059 | Component of CSM |
Centrifuge | Thermo Scientific | 75-217-420 | Sample centrifugation |
Cleaved-PARP (D214) | BD Biosciences | F21-852 | Identification of apoptotic cells |
Cyclin B1 | BD Biosciences | GNS-1 | G2 Resolution |
Dimethylsulfoxide (DMSO) | Sigma | D2650 | Cryopreservative |
EQ Four Element Calibration Beads | Fluidigm | 201078 | Internal metal standard for CyTOF performance |
FACS Tube w/ mesh strainer | Corning | 08-771-23 | Cell strainer to remove clumps/debris before CyTOF run |
Fetal Bovine Serum (FBS) | VWR | 97068-085 | Cell culture growth supplement |
Helios | Fluidigm | CyTOF System/Platform | |
Heparin | Sigma | H3393 | Staining additive to prevent non-specific staining |
IdU (5-Iodo-2′-deoxyuridine) | Sigma | I7125 | Incorporates in S-phase |
Ki-67 | eBiosciences | SolA15 | Confirmation of G0/G1 |
MaxPar Multi Label Kit | Fluidigm | 201300 | Metal labeling kit, attaches metals to antibodies |
Microplate Shaker | Thermo Scientific | 88880023 | Mixing samples during staining |
Paraformaldehyde (PFA) | Electron Microscopy Services | 15710 | Fixative |
pentamethylcyclopentadienyl-Ir(III)-dipyridophenazine | Fluidigm | 201192 | Cell identification during CyTOF acquisition |
p-H2AX (S139) | Millipore | JBW301 | Detection of DNA damage |
p-HH3 (S28) | Biolegend | HTA28 | M-phase Resolution |
Phosphate Buffered Saline (PBS) | Gibco | 14190-144 | Wash solution for cell culture and component of fixative solution |
p-Rb (S807/811) | BD Biosciences | J112906 | G0/G1 Resolution |
Proteomic Stabilizer | SmartTube Inc | PROT1 | Sample fixative |
RPMI 1640 | Gibco | 21870-076 | Cell culture growth medium |
Sodium Azide | Acros Organics | AC447810250 | Component of CSM/Antibody buffer, biocide |