Este protocolo adapta medidas do ciclo celular para uso em uma plataforma de citometria de massa. Com as capacidades multiparamétricas da citometria de massa, a medição direta da incorporação de iodo permite a identificação de células em fase S, enquanto marcadores de ciclagem intracelular permitem a caracterização de cada estado do ciclo celular em uma variedade de condições experimentais.
A regulação da fase do ciclo celular é um aspecto importante da proliferação celular e da homeostase. A interrupção dos mecanismos regulatórios que regem o ciclo celular é uma característica de uma série de doenças, incluindo o câncer. O estudo do ciclo celular requer a capacidade de definir o número de células em cada porção da progressão do ciclo celular, bem como delinear claramente entre cada fase do ciclo celular. O advento da citometria de massa (MCM) fornece um enorme potencial para análise de célula única de alto rendimento através de medições diretas de isótopos elementares, e o desenvolvimento de um método para medir o estado do ciclo celular por MCM amplia ainda mais a utilidade da MCM. Descrevemos aqui um método que mede diretamente a 5-iodo-2′-desoxiuridina (IdU), semelhante à 5-bromo-2′-desoxiuridina (BrdU), em um sistema MCM. O uso desse MCM baseado em IdU oferece várias vantagens. Primeiro, o IdU é rapidamente incorporado ao DNA durante sua síntese, permitindo a medição confiável de células na fase S com incubações tão curtas quanto 10-15 minutos. Em segundo lugar, o IdU é medido sem a necessidade de anticorpos secundários ou a necessidade de degradação do DNA. Terceiro, a coloração de IdU pode ser facilmente combinada com a medição de ciclina B1, proteína fosforilada de retinoblastoma (pRb) e histona fosforilada H3 (pHH3), que coletivamente fornece delineamento claro das cinco fases do ciclo celular. A combinação desses marcadores de ciclo celular com o alto número de parâmetros possíveis com a MCM permite a combinação com inúmeras outras métricas.
A citometria de massa permite a detecção de aproximadamente 40 parâmetros, aproveitando a alta resolução e a natureza quantitativa da espectroscopia de massas. Anticorpos marcados com metais são usados em vez de anticorpos conjugados com fluoróforos que permitem um maior número de canais e produzem mínimo spillover 1,2. A MCM apresenta vantagens e desvantagens em relação à análise do ciclo celular em comparação à citometria de fluxo. Uma grande vantagem da MCM é que o grande número de parâmetros permite a medição simultânea do estado do ciclo celular em um grande número de tipos de células T imunofenotipicamente distintos em amostras altamente heterogêneas. A MCM tem sido usada com sucesso para medir o estado do ciclo celular durante a hematopoese normal na medula óssea humana3 e modelos murinos transgênicos de deficiência de telomerase4. A análise do estado do ciclo celular na leucemia mieloide aguda (LMA) mostrou que o ciclo celular correlacionou-se com respostas conhecidas a terapias clínicas, fornecendo uma visão in vivo das características funcionais que podem informar as seleções terapêuticas5. Uma segunda vantagem da análise do ciclo celular por citometria de massa é a capacidade de medir um grande número de outros marcadores funcionais que podem ser correlacionados com o estado do ciclo celular. Trabalhos recentes têm sido capazes de correlacionar a síntese de proteínas e RNA com o estado do ciclo celular através do uso de anticorpos marcados com IdU e metal para BRU e rRNA6. Esse tipo de análise altamente paramétrica medindo o estado do ciclo celular em várias populações em um continuum de diferenciação seria quase impossível com a tecnologia atual de citometria de fluxo. A principal desvantagem da MCM é a falta de colorações de DNA ou RNA comparáveis às usadas em citometria de fluxo fluorescente (por exemplo, DAPI, Hoechst, Pyronin Y, etc.). Corantes fluorescentes podem fornecer medidas relativamente precisas do conteúdo de DNA e RNA, mas essa precisão só é possível devido às mudanças nas propriedades fluorescentes desses corantes que ocorrem na intercalação entre bases nucleotídicas. A análise de MCM é, portanto, incapaz de medir o conteúdo de DNA ou RNA com precisão semelhante. Em vez disso, a análise do ciclo celular por citometria de massa baseia-se em medições de proteínas relacionadas ao estado do ciclo celular, como ciclina B1, proteína de retinoblastoma fosforilado (pRb) e histona H3 fosforilada (pHH3) combinadas com a medição direta do átomo de iodo da incorporação de IdU em células de fase S. Essas duas abordagens de medição produzem resultados altamente semelhantes durante a proliferação celular normal, mas podem ser potencialmente discordantes quando a progressão do ciclo celular é interrompida.
A medição do número de células em cada fase do ciclo celular é importante para entender o desenvolvimento normal do ciclo celular, bem como a interrupção do ciclo celular, que é comumente observada em cânceres e doenças imunológicas. MCM fornece medição confiável de fatores extracelulares e intracelulares usando anticorpos marcados com metal; no entanto, a medição da fase S foi limitada, pois o intercalador de DNA baseado em irídio foi incapaz de diferenciar entre DNA 2N e 4N. Para definir as fases do ciclo celular, Behbehani desenvolveu um método que utiliza IdU com massa de 127, que se enquadra na faixa do citômetro de massa e permite a medição direta de células na fase S3. Essa medição direta contorna a necessidade de anticorpos secundários ou o uso de agentes desnaturantes do DNA, como ácido ou DNase. Em conjunto com marcadores de ciclagem intracelular, permite alta resolução da distribuição do ciclo celular em modelos experimentais.
Este protocolo adapta medidas do ciclo celular de protocolos comuns de citometria de fluxo para MCM. Nossos métodos fornecem uma maneira conveniente e simples de incluir parâmetros do ciclo celular. A incorporação de amostras in vitro por IdU requer apenas 10 a 15 minutos de incubação a 37 °C, o que é mais curto do que a maioria dos protocolos de coloração de BrdU, que recomendam tempos de incubação de várias horas 3,7. As amostras incorporadas de IdU e BrdU podem ser fixadas usando um estabilizador proteômico e, em seguida, armazenadas por algum tempo em um freezer de -80 °C. Isso permite que um grande número de amostras coradas com IdU seja arquivado para análise em lote sem redução na qualidade da amostra.
Os exemplos aqui apresentados demonstram como usar uma plataforma MCM para analisar a distribuição do ciclo celular. Também foi demonstrado que a análise do ciclo celular é sensível a condições experimentais como tempo e temperatura, o que é uma consideração importante que os pesquisadores devem ter ao considerar a MCM para sua análise do ciclo celular14. As amostras deixadas em armazenamento por um curto período de tempo, não superior a uma hora, terão incorporação de IdU compar?…
The authors have nothing to disclose.
Os autores gostariam de agradecer os esforços de Palak Sekhri, Hussam Alkhalaileh, Hsiaochi Chang e Justin Lyeberger por seu apoio experimental. Este trabalho foi apoiado pelo Programa de Bolsas Pelotonia. Quaisquer opiniões, descobertas e conclusões expressas neste material são do(s) autor(es) e não refletem necessariamente as do Programa de Bolsas Pelotonia.”
Bovine Serum Albumin (BSA) | Sigma | A3059 | Component of CSM |
Centrifuge | Thermo Scientific | 75-217-420 | Sample centrifugation |
Cleaved-PARP (D214) | BD Biosciences | F21-852 | Identification of apoptotic cells |
Cyclin B1 | BD Biosciences | GNS-1 | G2 Resolution |
Dimethylsulfoxide (DMSO) | Sigma | D2650 | Cryopreservative |
EQ Four Element Calibration Beads | Fluidigm | 201078 | Internal metal standard for CyTOF performance |
FACS Tube w/ mesh strainer | Corning | 08-771-23 | Cell strainer to remove clumps/debris before CyTOF run |
Fetal Bovine Serum (FBS) | VWR | 97068-085 | Cell culture growth supplement |
Helios | Fluidigm | CyTOF System/Platform | |
Heparin | Sigma | H3393 | Staining additive to prevent non-specific staining |
IdU (5-Iodo-2′-deoxyuridine) | Sigma | I7125 | Incorporates in S-phase |
Ki-67 | eBiosciences | SolA15 | Confirmation of G0/G1 |
MaxPar Multi Label Kit | Fluidigm | 201300 | Metal labeling kit, attaches metals to antibodies |
Microplate Shaker | Thermo Scientific | 88880023 | Mixing samples during staining |
Paraformaldehyde (PFA) | Electron Microscopy Services | 15710 | Fixative |
pentamethylcyclopentadienyl-Ir(III)-dipyridophenazine | Fluidigm | 201192 | Cell identification during CyTOF acquisition |
p-H2AX (S139) | Millipore | JBW301 | Detection of DNA damage |
p-HH3 (S28) | Biolegend | HTA28 | M-phase Resolution |
Phosphate Buffered Saline (PBS) | Gibco | 14190-144 | Wash solution for cell culture and component of fixative solution |
p-Rb (S807/811) | BD Biosciences | J112906 | G0/G1 Resolution |
Proteomic Stabilizer | SmartTube Inc | PROT1 | Sample fixative |
RPMI 1640 | Gibco | 21870-076 | Cell culture growth medium |
Sodium Azide | Acros Organics | AC447810250 | Component of CSM/Antibody buffer, biocide |