Apresentado aqui é um protocolo para detectar a produção de armadilha extracelular de macrófagos (MET) na cultura celular ao vivo usando microscopia e mancha de fluorescência. Este protocolo pode ser estendido para examinar marcadores específicos da proteína met por coloração de imunofluorescência.
A liberação de armadilhas extracelulares (ETs) por neutrófilos tem sido identificada como um fator contribuinte para o desenvolvimento de doenças relacionadas à inflamação crônica. ETs neutrófilos (NETs) consistem em uma malha de DNA, proteínas histona e várias proteínas de grânulo (ou seja, mieloperoxidase, elastase e cateterasina G). Outras células imunes, incluindo macrófagos, também podem produzir ETs; no entanto, até que ponto isso ocorre in vivo e se as armadilhas extracelulares de macrófagos (METs) desempenham um papel nos mecanismos patológicos não foi examinada em detalhes. Para entender melhor o papel dos METs em patologias inflamatórias, um protocolo foi desenvolvido para visualizar a liberação met de macrófagos humanos primários in vitro, que também pode ser explorado em experimentos de imunofluorescência. Isso permite uma maior caracterização dessas estruturas e sua comparação com ETs liberados de neutrófilos. Macrófagos derivados de monócito santem (HMDM) produzem METs após a exposição a diferentes estímulos inflamatórios após a diferenciação do fenótipo pró-inflamatório M1. A liberação de METs pode ser visualizada por microscopia usando uma mancha de ácido nucleico fluorescente verde que é imperdestina às células vivas (por exemplo, verde SYTOX). O uso de macrófagos primários recém-isolados, como o HMDM, é vantajoso na modelagem de eventos inflamatórios in vivo que são relevantes para potenciais aplicações clínicas. Este protocolo também pode ser usado para estudar a liberação met de linhas celulares monócitos humanos (por exemplo, THP-1) após a diferenciação em macrófagos com acetato phorbol myristate ou outras linhas celulares de macrófagos (por exemplo, as células J774A.1 murine macrófagos).
A liberação de ETs de neutrófilos foi identificada pela primeira vez como uma resposta imune inata desencadeada pela infecção bacteriana1. Eles consistem em uma espinha dorsal de DNA para que várias proteínas de grânulo com propriedades antibacterianas estão ligadas, incluindo elastase neutrófilo e mieloperoxidase2. O principal papel dos ETs neutrófilos (NETs) é capturar patógenos e facilitar a sua eliminação3. No entanto, além do papel protetor dos ETs na defesa imunológica, um número crescente de estudos também descobriu um papel na patogênese da doença, particularmente durante o desenvolvimento de doenças transmitidas por inflamação (ou seja, artrite reumatóide e aterosclerose4). A liberação de ETs pode ser desencadeada por várias citocinas pró-inflamatórias, incluindo interleucina 8 (IL-8) e fator de necrose tumoral alfa (TNFα)5,6, e o acúmulo localizado de ETs pode aumentar os danos nos tecidos e evocar um resposta pró-inflamatória7. Por exemplo, os ETs têm sido implicados como desempenhando um papel causal no desenvolvimento da aterosclerose8,promovendo a trombose9,e prevendo o risco cardiovascular10.
Agora é reconhecido que, além de neutrófilos, outras células imunes (ou seja, células de mastro, eosinófilos e macrófagos) também podem liberar ETs na exposição à estimulação microbiana ou pró-inflamatória11,12. Isso pode ser particularmente significativo no caso dos macrófagos, considerando seu papel fundamental no desenvolvimento, regulação e resolução de doenças inflamatórias crônicas. Portanto, é importante obter uma maior compreensão da relação potencial entre a liberação de ET de macrófagos e desenvolvimento de doenças relacionadas à inflamação. Estudos recentes têm mostrado a presença de METs e NETs em placas ateroscleróticas humanas intactas etrombo13organizado. Da mesma forma, mets têm sido implicados na condução de lesões renais através da regulação de respostas inflamatórias14. No entanto, em contraste com os neutrófilos, existem dados limitados sobre os mecanismos de formação met de macrófagos. Estudos recentes usando modelos in vitro humanos de formação MET mostram algumas diferenças nas vias envolvidas em cada tipo de célula (ou seja, em relação à ausência de citrulização histona com macrófagos)6. No entanto, alguns mostraram que a liberação net também pode ocorrer na ausência de histona ciitrullination15.
O objetivo geral deste protocolo é fornecer um método simples e direto para avaliar a liberação do MET em um modelo de macrófago clinicamente relevante. Existem uma série de diferentes modelos de células de macrófagos in vitro que têm sido usados para estudar METs (ou seja, a linha de células monócito humana THP-1 e várias linhas de células demacrófagosmurine) 16 . Existem algumas limitações associadas a esses modelos. Por exemplo, a diferenciação de monócitos THP-1 para macrófagos geralmente requer um passo de preparação, como a adição de acetato phorbol myristate (PMA), que por si só ativa proteína kinase C (PKC) vias dependentes. Este processo é conhecido por desencadear a liberação de ET4 e resulta em uma liberação baixo basal MET de células THP-1. Outros estudos destacaram algumas diferenças na bioatividade e respostas inflamatórias montadas por macrófagos in vivo em comparação com as células THP-1 tratadas com PMA17.
Da mesma forma, o comportamento e as respostas inflamatórias de diferentes linhas celulares semelhantes a macrófagos de urina não representam completamente o espectro de resposta dos macrófagos humanos primários18. Portanto, com a finalidade de investigar a formação de ET de macrófagos no ambiente clínico, acredita-se que os macrófagos humanos primários derivados de monócito (HMDMs) sejam um modelo mais relevante do que linhas celulares monocíticas ou murina semelhantes a macrófagos.
A liberação de ET de HMDMs polarizados M1 foi demonstrada após a exposição dessas células a uma série de diferentes estímulos inflamatórios, incluindo o ácido ocorrecloloso oxidante derivado da mieloperoxidase (HOCl), PMA, TNFα e IL-86. Descrito aqui é um protocolo para polarizar HMDMs ao fenótipo M1 e visualizar a liberação met subseqüente após a exposição a esses estímulos inflamatórios. Pma é usado como um estímulo de liberação MET para facilitar comparações com estudos anteriores que usaram neutrófilos. Importante, HOCl, IL-8, e TNFα são usados igualmente para estimular a liberação MET, que são acreditadas para ser melhores modelos do ambiente inflamatório in vivo. O método microscópico para visualização da liberação de ET envolve a coloração do DNA extracelular em culturas de células vivas usando o verde SYTOX, uma mancha de ácido nucleico verde fluorescente impermeável que tem sido aplicada com sucesso em estudos anteriores de neutrófilos. Este método permite uma avaliação rápida e qualitativa da liberação de ET, mas não é apropriado como um método autônomo para a quantificação da extensão de liberação de ET. Metodologia alternativa deve ser usada se a quantificação for necessária para comparar a extensão da liberação de ET resultante de diferentes condições ou intervenções de tratamento.
A geração e visualização da formação MET utilizando HmDMs diferenciados de M1 representa um novo modelo in vitro que pode ser útil para investigar o potencial papel patológico dessas estruturas de macrófagos, particularmente inflamatória crônica Condições. Ele fornece um protocolo robusto para a estimulação de macrófagos humanos primários para liberar METs, que também podem ser utilizados em estudos relacionados com monocyte humano ou linhas de células macrófagos de urina. A implementação bem-sucedi…
The authors have nothing to disclose.
Este trabalho foi apoiado por um Perpetual IMPACT Grant (IPAP201601422) e novo Nordisk Foundation Biomedical Project Grant (NNF17OC0028990). YZ também reconhece o recebimento de um Prêmio de Pós-Graduação Australiana da Universidade de Sydney. Gostaríamos de agradecer ao Sr. Pat Pisansarakit e à Sra. Morgan Jones pela ajuda com o isolamento monócito e a cultura dos tecidos.
120Q broad spectrum fluorescent light source | EXFO Photonic Solutions, Toronto, Canada | x-cite series | |
Corning CellBIND Multiple Well Plate (12 wells) | Sigma-Aldrich | CLS3336 | For cell culture |
Differential Quik Stain Kit (Modified Giemsa) | Polysciences Inc. | 24606 | Characterisation of monocytes |
Hanks balanced salt solution (HBSS) | Thermo-Fisher | 14025050 | For washing steps and HOCl treatment |
Hypochlorous acid (HOCl) | Sigma-Aldrich | 320331 | For MET stimulation |
Interferon gamma | Thermo-Fisher | PMC4031 | For M1 priming |
Interleukin 4 | Integrated Sciences | rhil-4 | For M2 priming |
Interleukin 8 | Miltenyl Biotec | 130-093-943 | For MET stimulation |
L-Glutamine | Sigma-Aldrich | 59202C | Added to culture media |
Lipopolysaccharide | Integrated Sciences | tlrl-eblps | For M1 priming |
Lymphoprep | Axis-Shield PoC AS | 1114544 | For isolation of monocytes |
Olympus IX71 inverted microscope | Olympus, Tokyo, Japan | ||
Phorbol 12- myristate 13-acetate (PMA) | Sigma-Aldrich | P8139 | For MET stimulation |
Phosphate buffered saline (PBS) | Sigma-Aldrich | D5652 | For washing steps |
RPMI-1640 media | Sigma-Aldrich | R8758 | For cell culture |
SYTOX green | Life Technologies | S7020 | For MET visulaization |
TH4-200 brightfield light source | Olympus, Tokyo, Japan | x-cite series | |
Tumor necrosis factor alpha | Lonza | 300-01A-50 | For MET stimulation |