Nós descrevemos uma plataforma que utilize uma biblioteca de Escherichia coli resistente antibiótico isogênicos para o desreplicação dos antibióticos. A identidade de um antibiótico produzido por bactérias ou fungos pode ser deduzada pelo crescimento de E. coli expressando seu respectivo gene de resistência. Esta plataforma é economicamente eficaz e tempo-eficiente.
Um dos principais desafios na busca de novos antibióticos a partir de extratos de produtos naturais é a re-descoberta de compostos comuns. Para abordar esse desafio, a dereplicação, que é o processo de identificação de compostos conhecidos, é realizada em amostras de interesse. Os métodos de desreferência, como a separação analítica seguida por espectrometria de massas, são demorados e com uso intensivo de recursos. Para melhorar o processo de dereplicação, desenvolvemos a plataforma de resistência a antibióticos (ARP). O ARP é uma biblioteca de aproximadamente 100 genes da resistência antibiótica que foram clonados individualmente em Escherichia coli. Esta coleção de estirpe tem muitas aplicações, incluindo um método rentável e facile para a dereplicação de antibióticos. O processo envolve a fermentação de micróbios de produção de antibióticos na superfície de placas de Petri retangulares contendo meio sólido, permitindo assim a secreção e difusão de metabólitos secundários através do meio. Após um período de fermentação de 6 dias, a biomassa microbiana é removida e uma fina sobreposição de agar é adicionada à placa de Petri para criar uma superfície lisa e permitir o crescimento das cepas do indicador e. coli . Nossa coleção de cepas de ARP é fixada na superfície do prato de Petri contendo antibióticos. A placa é incubada em seguida durante a noite para permitir o crescimento de E. coli na superfície da sobreposição. Apenas cepas que contenham resistência a um antibiótico específico (ou classe) crescem nesta superfície, possibilitando a rápida identificação do composto produzido. Este método tem sido usado com sucesso para a identificação de produtores de antibióticos conhecidos e como um meio para identificar aqueles que produzem novos compostos.
Desde a descoberta da penicilina em 1928, os produtos naturais derivados de microrganismos ambientais provaram ser uma fonte rica de compostos antimicrobianos1. Aproximadamente 80% dos antibióticos do produto natural são derivados de bactérias do gênero Streptomyces e outros Actinomycetes, enquanto os 20% restantes são produzidos por espécies fúngicas1. Alguns dos andaimes antibióticos mais comuns utilizados na clínica, como os β-lactams, tetraciclinas, rifamicinas e aminoglicosídeos, foram originalmente isolados de micróbios2. No entanto, devido ao surgimento de bactérias multirresistentes (MDR), nosso atual painel de antibióticos tornou-se menos eficaz no tratamento3,4. Estes incluem os patógenos “ESKAPE” (i.e., enterococos resistentes à vancomicina e Staphylococcus aureusresistentes a β-lactâmicos, Klebsiella pneumoniae, Pseudomonas aeruginosa, Acinetobacter baumanniie Enterobacter SP.), que são um subconjunto de bactérias consideradas associadas ao maior risco por um número de grandes autoridades de saúde pública, como a Organização Mundial da saúde3,4,5. O surgimento e a disseminação global desses patógenos do MDR resultam em uma necessidade constante de novos antibióticos3,4,5. Lamentavelmente, as duas últimas décadas demonstraram que a descoberta de novos antibióticos a partir de fontes microbianas é cada vez mais difícil6. As abordagens atuais para a descoberta de drogas incluem a triagem de alto débito de compostos bioativos, incluindo bibliotecas de extração de produtos naturais, permitindo que milhares de extratos sejam testados em um determinado momento2. No entanto, uma vez detectada a atividade antimicrobiana, o próximo passo é analisar o conteúdo do extrato bruto para identificar o componente ativo e eliminar aqueles que contenham compostos conhecidos ou redundantes7,8. Este processo, referido como dereplication, é vital para prevenir e/ou reduzir significativamente o tempo gasto na redescoberta de antibióticos conhecidos7,9. Embora um passo necessário na descoberta de medicamentos de produto natural, a desreferência é notoriamente trabalhosa e intensiva de recursos10.
Desde que Beutler et al. primeiro cunhou o termo “dereplicação”, esforços extensivos têm sido feitos para desenvolver estratégias inovadoras para a rápida identificação de antibióticos conhecidos11,12. Hoje, as ferramentas mais comuns utilizadas para a dereplicação incluem sistemas cromatográficosanalíticos, comocromatografia líquida de alta eficiência, espectrometria de massas e métodos de detecção baseados em ressonância magnética nuclear11,13. Infelizmente, cada um desses métodos requer o uso de equipamentos analíticos caros e interpretação de dados sofisticados.
Na tentativa de desenvolver um método de desreferência que pode ser realizado rapidamente sem equipamento especializado, estabelecemos a plataforma de resistência a antibióticos (ARP)10. O ARP pode ser usado para a descoberta de adjuvantes antibióticos, o perfilamento de novos compostos antibióticos contra mecanismos de resistência conhecidos, e a desreferência de antibióticos conhecidos em extratos derivados de actinobactérias e outros micróbios. Aqui, nós nos concentramos em sua aplicação na dereplicação de antibióticos. O ARP utiliza uma biblioteca de cepas isogênicas de Escherichia coli expressando genes de resistência individuais que são eficazes contra os antibióticos mais comumente redescobertos14,15. Quando a biblioteca de e. coli é cultivada na presença de um organismo produtor de metabolito secundário, a identidade do composto pode ser deduzada pelo crescimento de cepas de e. coli que expressam seu gene de resistência associado10. Quando o ARP foi relatado pela primeira vez, a biblioteca consistiu em > 40 genes conferindo resistência a 16 classes de antibióticos. O modelo de dereplicação original foi projetado para abranger um subconjunto de genes de resistência por classe antibiótica para fornecer informações sobre subclasse antibiótica durante o processo de desreferência. Hoje, o ARP é compreendido de > 90 genes que conferem a resistência a 18 classes antibióticas. Usando nossa extensa coleção de genes de resistência, um modelo de dereplicação secundária foi desenvolvido e é conhecido como a plataforma mínima de resistência a antibióticos (MARP). Este modelo foi criado para eliminar a redundância genética e simplesmente fornecer informações sobre a classe geral de antibióticos que um metabolito dereplicated está relacionado. Adicionalmente, o modelo de MARP possui o tipo selvagem e uma tensão deficiente hyperpermeable/efflux de e. coli BW25113 (e. coli BW25113 δBAMBδTolc), comparado à encarnação original do ARP, que somente utiliza a estirpe hiperpermeável. Este aspecto único cria fenótipos adicionais durante a dereplicação, indicando uma capacidade de compostos para atravessar a membrana externa de bactérias Gram-negativas. Aqui, nós descrevemos um protocolo robusto a ser seguido quando dereplicating com o ARP e/ou o MARP, realça as etapas as mais críticas a ser seguidas, e discute os vários resultados possíveis.
O protocolo descrito acima pode ser aplicado à descoberta de novos compostos antimicrobianos e adjuvantes que podem ser usados em conjunto com os antibióticos existentes para resgatar sua atividade. A plataforma aproveita a especificidade elevada da carcaça de mecanismos da resistência e de seus antibióticos cognato, aos compostos do dereplicate dentro dos extratos naturais crus do produto. Embora o tempo necessário para que as placas de desreferência sejam preparadas seja longa (~ 2 semanas), o processo de derepl…
The authors have nothing to disclose.
A pesquisa no laboratório de Wright que pertence ao ARP/MARP foi apoiada pelo fundo da pesquisa de Ontário e pelos institutos canadenses da concessão da pesquisa da saúde (FRN-148463). Gostaríamos de reconhecer Sommer Chou para ajudar na expansão e organização da biblioteca ARP.
Agar | Bio Shop | AGR003.5 | |
AlumaSeal CS Films for cold storage | Sigma-Aldrich | Z722642-50EA | |
Ampicillin Sodium Salt | Bio Shop | AMP201.100 | |
BBL Mueller Hinton II Broth (Cation-Adjusted) | Becton Dickinson | 212322 | |
BBL Phytone Peptone (Soytone) | Becton Dickinson | 211906 | |
Calcium Carbonate | Bio Shop | CAR303.500 | |
Casamino acid | Bio Basic | 3060 | |
Cotton-Tipped Applicators | Fisher Scientific | 23-400-101 | |
CryoPure Tube 1.8ml mix.colour | Sarstedt | 72.379.992 | |
D-glucose | Bio Shop | GLU501.5 | |
Disposable Culture Tube, 16x100mm | Fisher Scientific | 14-961-29 | |
Ethyl Alcohol Anhydrous | Commercial Alcohols | P016EAAN | |
Glass Beads, Solid | Fisher Scientific | 11-312C | |
Glycerol | Bio Shop | GLY001.4 | |
Hydrochloric Acid | Fisher Scientific | A144-212 | |
Instant sealing sterilization pouch | Fisher Scientific | 01-812-54 | |
Iron (II) Sulfate Heptahydrate | Sigma-Aldrich | F7002-250G | |
Kanamycin Sulfate | Bio Shop | KAN201.50 | |
LB Broth Lennox | Bio Shop | LBL405.500 | |
Magnesium Sulfate Heptahydrate | Fisher Scientific | M63-500 | |
MF-Millipore Membrane Filter, 0.45 µm pore size | Millipore-Sigma | HAWP00010 | 10 FT roll, hydrophillic, white, plain |
Microtest Plate 96 well, round base | Sarstedt | 82.1582.001 | |
New Brunswick Innova 44 | Eppendorf | M1282-0000 | |
Nunc OmniTray Single-Well Plate | Thermo Fisher Scientific | 264728 | with lid, sterile, non treated |
Petri dish 92x16mm with cams | Sarstedt | 82.1473.001 | |
Pinning tools | ETH Zurich | – | Custom order |
Potassium Chloride | Fisher Scientific | P217-500 | |
Potato starch | Bulk Barn | 279 | |
Sodium Chloride | Fisher Scientific | BP358-10 | |
Sodium Nitrate | Fisher Scientific | S343-500 | |
Wood Applicators | Dukal Corporation | 9000 | |
Yeast Extract | Fisher Scientific | BP1422-2 |