Summary

Control de las velocidades de flujo de fluidos activos 3D basados en microtúbulos mediante la temperatura

Published: November 26, 2019
doi:

Summary

El objetivo de este protocolo es utilizar la temperatura para controlar las velocidades de flujo de los fluidos activos tridimensionales. La ventaja de este método no sólo permite regular las velocidades de flujo in situ, sino que también permite un control dinámico, como ajustar periódicamente las velocidades de flujo hacia arriba y hacia abajo.

Abstract

Presentamos un método para usar la temperatura para ajustar las velocidades de flujo de fluidos activos tridimensionales tridimensionales (3D) impulsados por la quinesina y basados en microtúbulos. Este método permite ajustar las velocidades in situ sin necesidad de fabricar nuevas muestras para alcanzar las diferentes velocidades deseadas. Además, este método permite el control dinámico de la velocidad. Ciclismo la temperatura lleva a los fluidos a fluir rápido y lento, periódicamente. Esta controlabilidad se basa en la característica de Arrhenius de la reacción de kinesina-microtúbulo, lo que demuestra un rango de velocidad de flujo medio controlado de 4-8 m/s. El método presentado abrirá la puerta al diseño de dispositivos microfluídicos donde los caudales en el canal son ajustables localmente sin necesidad de una válvula.

Introduction

La materia activa se diferencia de la materia pasiva convencional debido a su capacidad para convertir la energía química en trabajo mecánico. Un material que posee tal capacidad puede consistir en entidades vivas o no vivientes como bacterias, insectos, coloides, granos y filamentos citoesqueléticos1,2,3,4,5,6,7,8,9,10. Estas entidades materiales interactúan con sus vecinos. A mayor escala, se autoorganizan en vórtices turbulentos (turbulencia activa) o flujos materiales11,12,13,14,15,16,17,18,19,20. La comprensión de la autoorganización de la materia activa ha dado lugar a diversas aplicaciones en transbordadores moleculares, dispositivos ópticos y cómputo paralelo21,22,23. Para llevar las aplicaciones al siguiente nivel se requiere control más allá de la autoorganización. Por ejemplo, Palacci y otros desarrollaron un coloide encapsulado de hematita que sólo se autopropulsado cuando se expone a la luz azul controlada manualmente, lo que llevó a la aparición de cristales vivos24. Morin y otros establecieron el control de la rodadura de los coloides de Quincke mediante el uso de un campo eléctrico externo ajustable, lo que resulta en bandadas coloidales en un canal25similar a una pista de carreras. Estos trabajos anteriores demuestran el papel del control local en las aplicaciones y avanzan en la base de conocimientos de la materia activa.

En este artículo, nos centramos en la controlabilidad de fluidos activos 3D basados en microtúbulos (MT) basados en kinesina. Los fluidos consisten en tres componentes principales: MTs, motores moleculares de kinesina y deplorantes. Los depilantes inducen una fuerza de agotamiento para agrupar los MT, que luego son puenteados por los racimos de motor. Estos motores caminan a lo largo del MTstoward el extremo más. Cuando un par de MTsis puenteados son antiparalelos, los motores correspondientes caminan en direcciones opuestas. Sin embargo, los motores están unidos en un racimo y son incapaces de separarse, por lo que se deslizan de forma cooperativa pares de M (deslizamiento entre filamentos, Figura 1A). Estas dinámicas deslizantes se acumulan, haciendo que los haces de MTsto se extiendan hasta alcanzar su punto de inestabilidad de pandeo y rotura (agrupaciones extensivas, Figura 1B)26. Los haces rotos son recocidos por la fuerza de agotamiento, que posteriormente se extiende de nuevo, y la dinámica se repite. Durante el proceso de la dinámica de repetición, los movimientos del haz agitan el líquido cercano, induciendo los flujos que se pueden visualizar mediante el dopaje con trazadores a escala de micrones(Figura 1C). Sánchez y Henkin et al. han caracterizado las velocidades medias de los trazadores, encontrando que las velocidades eran ajustables variando las concentraciones de trifosfato de adenosina (ATP), depilantes, racimos de motores y MTs19,27. Sin embargo, tal atún existía sólo antes de la síntesis de fluido activo. Después de la síntesis, la incapacidad se perdió, y los fluidos se autoorganizados a su manera. Para controlar la actividad del fluido activo después de la síntesis, Ross.et al. informó de un método utilizando la dimerización activada por la luz de las proteínas motoras, permitiendo que la actividad del fluido se afina y apague utilizando la luz28. Mientras que el control de la luz es conveniente en términos de activación local de los fluidos, el método requiere rediseñar las estructuras de las proteínas del motor, junto con la modificación de las trayectorias ópticas en un microscopio. Aquí, proporcionamos un método fácil de usar para controlar localmente los flujos de fluidos sin modificación del microscopio mientras mantenemos intacta la estructura del motor.

Nuestro método de ajuste local del flujo de fluido activo se basa en la ley Arrhenius porque se ha informado que la reacción kinesina-MT aumenta con la temperatura29,30,31,32. Nuestros estudios anteriores mostraron que la dependencia de la temperatura de la velocidad media de un flujo de fluido activo siguió la ecuación de Arrhenius: vA exp(-Ea/RT), donde A es un factor preexponencial, R es la constante de gas, Ea es la energía de activación, y T es la temperatura del sistema33. Por lo tanto, la actividad del fluido es sensible al ambiente de temperatura, y la temperatura del sistema debe ser consistente para estabilizar el rendimiento del motor y, en consecuencia, la velocidad de flujo de fluido34. En este artículo, demostramos el uso de la dependencia de temperatura del motor para ajustar continuamente las velocidades de flujo de los fluidos activos ajustando la temperatura del sistema. También demostramos la preparación de una muestra de fluido activo, seguida de montaje de la muestra en una etapa del microscopio cuya temperatura se controla a través de software informático. El aumento de la temperatura de 16 oC a 36 oC acelera las velocidades medias de flujo de 4 a 8 m/s. Además, la incapacidad es reversible: aumenta y disminuye repetidamente la temperatura acelera y desacelera secuencialmente el flujo. El método demostrado es aplicable a una amplia gama de sistemas donde las reacciones principales obedecen a la ley Arrhenius, como el ensayo de deslizamiento MT29,30,31,32.

Protocol

1. Preparación de MTs ADVERTENCIA: En este paso purificamos las tubulinas del tejido cerebral bovino. El cerebro bovino puede causar la variante de la enfermedad de Creutzfeldt-Jakob (vCJD)35. Por lo tanto, los desechos cerebrales y las soluciones relacionadas, botellas y puntas de pipeta deben recogerse en una bolsa de biorresiduos y eliminarse como residuos biopeligrosos de acuerdo con las reglas de la institución. Purificar las tubulinas del cerebro bovin…

Representative Results

Preparar los fluidos activos basados en MT impulsados por la quinesina requiere kinesina y MT. Los TM fueron polimerizados a partir de tubulinas etiquetadas (pasos 1.3 y 1.4) que fueron purificadas a partir de cerebros bovinos (paso 1.1, Figura 2A),seguido de reciclaje para mejorar la pureza (paso 1.2, Figura 2B). Las proteínas motoras de kinesina se expresaron y se purificaron a partir de E. coli (pasos 2.1 y 2.2, <st…

Discussion

El control in situ de la materia activa abre la puerta a la autoorganización dirigida de la materia activa4,5,24,28,54. En este artículo, presentamos un protocolo para el uso de la temperatura para controlar los fluidos activos basados en MT impulsados por cineína in situ, basado en la característica Arrhenius del sistema29,</s…

Disclosures

The authors have nothing to disclose.

Acknowledgements

Plásmido K401-BCCP-H6 fue un regalo del Dr. Zvonimir Dogic. Esta investigación fue apoyada por el fondo de puesta en marcha del Dr. Kun-Ta Wu en el Instituto Politécnico de Worcester. Agradecemos al Dr. Zvonimir Dogic los protocolos para purificar y etiquetar la tubulina y sintetizar fluidos activos. Agradecemos al Dr. Marc Ridilla su experiencia en la expresión y purificación de proteínas. Agradecemos al Dr. William Benjamin Roger por ayudarnos con la construcción de la etapa de temperatura controlada. Reconocemos a Brandeis MRSEC (NSF-MRSEC-1420382) por el uso de la Instalación de Materiales Biológicos (BMF). Reconocemos a la Royal Society of Chemistry por adaptar las figuras de Bate et al. en Soft Matter33.

Materials

(±)-6-Hydroxy-2,5,7,8-tetramethylchromane-2-carboxylic acid Sigma-Aldrich 238813 Trolox
2-Mercaptoethanol Sigma-Aldrich M6250
3-(Trimethoxysilyl)propyl methacrylate, 98%, ACROS Organics Fisher Scientific AC216550050
3.2mm I.D. Tygon Tubing R-3603 HACH 2074038 Water tubes
31.75 mm diameter uncoated, sapphire window Edmund Optics 43-637 Sapphire disc
3M 1181 Copper Tape – 1/2 IN Width X 18 YD Length – 2.6 MIL Total Thickness – 27551 R.S. HUGHES 054007-27551 Copper tape
Acetic Acid Sigma-Aldrich A6283
Acrylamide Solution (40%/Electrophoresis), Fisher BioReagents Fisher Scientific BP1402-1
Adenosine 5'-triphosphate dipotassium salt hydrate Sigma-Aldrich A8937 ATP
Alexa Fluor 647 NHS Ester (Succinimidyl Ester) Thermo Fisher Scientific A20006 Far-red fluorescent dye. Alexa 647 can be pre suspended in dimethylsulfoxide (DMSO) before mixing with microtubules (1.3.3.2.)
Amicon Ultra-4 Centrifugal Filter Unit Sigma-Aldrich UFC801024 Centrifugal filter tube. Cutoff molecular weight: 10 kDa
Ammonium Persulfate, 100g, MP Biomedicals Fisher Scientific ICN802829 APS
Ampicillin Sodium Salt (Crystalline Powder), Fisher BioReagents Fisher Scientific BP1760 Ampicillin
Antivibration Table Nikon 63-7590S
Avanti J-E Centrifuge Beckman Coulter 369001
Bacto Agar Soldifying Agent, BD Diagnostics VWR 90000-760 Agar
Biotin Alfa Aesar A14207
Bucket-plastic white – 2 gallon Bon 84-715 Water bucket
Calcium Chloride Sigma-Aldrich 746495 CaCl2
Catalase from bovine liver Sigma-Aldrich C40
CFI Plan Apo Lambda 4x Obj Nikon MRD00045 4x air objective
C-FLLL-FOV GFP HC HC HISN ero Shift Nikon 96372 GFP filter cube
CH-109-1.4-1.5 TE Technology CH-109-1.4-1.5 Thermoelectric Cooler (TEC)
Chloramphenicol, 98%, ACROS Organics Fisher Scientific C0378
Cooling block N/A N/A Custom milled aluminum
Coomassie Brilliant Blue R-250 #1610400 Bio-Rad 1610400 Triphenylmethane dye
D-(+)-Glucose Sigma-Aldrich G7528
Dimethyl Sulfoxide (Certified ACS), Fisher Chemical Fisher Scientific D128 DMSO
DL-1,4-Dithiothreitol, 99%, for biochemistry, ACROS Organics Fisher Scientific AC165680050 DTT
DOWSIL 340 Heat Sink Compound Dow 1446622 Thermal paste
ETHYL ALCOHOL, 200 PROOF ACS/USP/NF GRADE 5 GALLON POLY CUBE Pharmco by Greenfield Global 111000200CB05 Ethanol
Ethylene glycol-bis(2-aminoethylether)-N,N,N',N'-tetraacetic acid Sigma-Aldrich E3889 EGTA
Ethylenediaminetetraacetic acid Sigma-Aldrich 798681 EDTA
Fisher BioReagents Microbiology Media Additives: Tryptone Fisher Scientific BP1421 Tryptone
Fisher BioReagents Microbiology Media Additives: Yeast Extract Fisher Scientific BP1422 Yeast extract
Fluoresbrite YG Microspheres, Calibration Grade 3.00 µm Polysciences 18861 Tracer particles
Glucose Oxidase from Aspergillus niger Sigma-Aldrich G2133
Glycerol Sigma-Aldrich G5516
GpCpp Jena Bioscience NU-405L Guanosine-5′[(α,β)-methyleno]triphosphate (GMPCPP)
GS Power's 18 Gauge (True American Wire Ga), 100 feet, 99.9% Stranded Oxygen Free Copper OFC, Red/Black 2 Conductor Bonded Zip Cord Power/Speaker Electrical Cable for Car, Audio, Home Theater Amazon B07428NBCW Copper wire
Guanosine 5'-triphosphate sodium salt hydrate Sigma-Aldrich G8877 GTP
Hellmanex III Sigma-Aldrich Z805939 Detergent
HEPES Sodium Salt (White Powder), Fisher BioReagents Fisher Scientific BP410 NaHEPES
High performance blender machine AIMORES AS-UP1250 Blender
His GraviTrap GE Healthcare 11003399 Gravity Column
Imidazole Sigma-Aldrich I5513
IPTG Sigma-Aldrich I6758 Isopropyl β-D-1-thiogalactopyranoside
Isopropyl Alcohol 99% Pharmco by Greenfield Global 231000099 Isopropanol
JA-10 rotor Beckman Coulter 369687
L-Glutamic acid potassium salt monohydrate Sigma-Aldrich G1501 K-Glutamate
Lysozyme from chicken egg white Sigma-Aldrich L6876
Magnesium chloride hexahydrate Sigma-Aldrich M2670 MgCl2•6H2O
MES sodium salt Sigma-Aldrich M5057 2-(N-Morpholino)ethanesulfonic acid sodium salt
MOPS Sigma-Aldrich M1254 3-(N-Morpholino)propanesulfonic acid
MP-3022 TE Technology MP-3022 Thermocouple
N,N,N',N'-Tetramethylethylenediamine 99%, ACROS Organics Fisher Scientific AC138450500 TEMED
Nanodrop 2000c UV-VIS Spectrophotometer Thermo Fisher Scientific E112352 Spectrometer
Nikon Ti2-E Nikon Inverted Microscope Nikon MEA54000
Norland Optical Adhesive 81 Norland Products NOA81 UV glue
Novex Sharp Pre-stained Protein Standard Thermo Fisher Scientific LC5800 Protein standard ladder
NuPAGE 4-12% Bis-Tris Protein Gels, 1.5 mm, 10-well Thermo Fisher Scientific NP0335BOX SDS gel
Optima L-90K Ultracentrifuge Beckman Coulter 365672
Parafilm PM996 Wrap , 4" Wide; 125 Ft/Roll Cole-Parmer EW-06720-40 Wax film
Pe 300 ultra Illumination System Single
Band , 3mm Light Guide control Pod
power supply
Nikon PE-300-UT-L-SB-40 Cool LED Illuminator
Phenylmethanesulfonyl fluoride Sigma-Aldrich 78830 PMSF
Phosphoenolpyruvic acid monopotassium salt, 99% BeanTown Chemical 129745 PEP
Pierce Coomassie (Bradford) Protein Assay Kit Thermo Fisher Scientific 23200
Pierce Protease Inhibitor Mini Tablets Thermo Fisher Scientific A32953
PIPES Sigma-Aldrich P6757 1,4-Piperazinediethanesulfonic acid
Pluronic F-127 Sigma-Aldrich P2443
Poly(ethylene glycol) Sigma-Aldrich 81300 PEG. Average molecular weight 20,000 Da
Potassium Hydroxide (Pellets/Certified ACS), Fisher Chemical Fisher Scientific P250-500 KOH
PowerEase 300W Power Supply (115 VAC) ThermoFisher Scientific PS0300 DC power supply of the gel box
PS-12-8.4A TE Technology PS-12-8.4A DC power supply of the temperature controller
Pyruvate Kinase/Lactic Dehydrogenase enzymes from rabbit muscle Sigma-Aldrich P-0294 PK/LDH
Quiet One Lifegard Fountain Pump, 296-Gallon Per Hour Amazon B005JWA612 Fish tank pump
Rosetta 2(DE3)pLysS Competent Cells – Novagen Millipore Sigma 71403 Competent cells
Sharp Microwave ZSMC0912BS Sharp 900W Countertop Microwave Oven, 0.9 Cubic Foot, Stainless Steel Amazon B01MT6JZMR Microwave for boiling the water
Sodium Chloride (Crystalline/Certified ACS), Fisher Chemical Fisher Scientific S271-500 NaCl
Sodium dodecyl sulfate Sigma-Aldrich L3771 SDS
Sodium phosphate monobasic Sigma-Aldrich S8282 NaH2PO4
Streptavidin Protein Thermo Fisher Scientific 21122
Sucrose Sigma-Aldrich S7903
TC-720 TE Technology TC-720 Temperature controller
Tris Base, Molecular Biology Grade – CAS 77-86-1 – Calbiochem Sigma-Aldrich 648310 Tris-HCL
Type 45 Ti rotor Beckman Coulter 339160
Type 70 Ti rotor Beckman Coulter 337922
Type 70.1 Ti rotor Beckman Coulter 342184
VWR General-Purpose Laboratory Labeling Tape VWR 89097-916 Paper tapes
VWR Micro Cover Glasses, Square, No. 1 1/2 VWR 48366-227 Glass coverslips
VWR Plain and Frosted Micro Slides, Premium VWR 75799-268 Glass slides
XCell SureLock Mini-Cell ThermoFisher Scientific EI0001 Gel box
ZYLA 5.5 USB3.0 Camera Nikon ZYLA5.5-USB3 Monochrome CCD camera

References

  1. Wioland, H., Lushi, E., Goldstein, R. E. Directed Collective Motion of Bacteria under Channel Confinement. New Journal of Physics. 18 (7), 075002 (2016).
  2. Wioland, H., Woodhouse, F. G., Dunkel, J., Kessler, J. O., Goldstein, R. E. Confinement Stabilizes a Bacterial Suspension into a Spiral Vortex. Physical Review Letters. 110 (26), 268102 (2013).
  3. Buhl, J., et al. From Disorder to Order in Marching Locusts. Science. 312 (5778), 1402-1406 (2006).
  4. Aubret, A., Youssef, M., Sacanna, S., Palacci, J. Targeted Assembly and Synchronization of Self-Spinning Microgears. Nature Physics. 14, 1114 (2018).
  5. Driscoll, M., et al. Unstable Fronts and Motile Structures Formed by Microrollers. Nature Physics. 13 (4), 375 (2017).
  6. Bricard, A., et al. Emergent Vortices in Populations of Colloidal Rollers. Nature Communications. 6, 7470 (2015).
  7. Kumar, N., Soni, H., Ramaswamy, S., Sood, A. K. Flocking at a Distance in Active Granular Matter. Nature Communications. 5, 4688 (2014).
  8. Farhadi, L., Fermino Do Rosario, C., Debold, E. P., Baskaran, A., Ross, J. L. Active Self-Organization of Actin-Microtubule Composite Self-Propelled Rods. Frontiers in Physics. 6 (75), 1 (2018).
  9. Schaller, V., Weber, C., Semmrich, C., Frey, E., Bausch, A. R. Polar Patterns of Driven Filaments. Nature. 467 (7311), 73-77 (2010).
  10. Keber, F. C., et al. Topology and Dynamics of Active Nematic Vesicles. Science. 345 (6201), 1135-1139 (2014).
  11. Doostmohammadi, A., Ignés-Mullol, J., Yeomans, J. M., Sagués, F. Active Nematics. Nature Communications. 9 (1), 3246 (2018).
  12. Wensink, H. H., et al. Meso-Scale Turbulence in Living Fluids. Proceedings of the National Academy of Sciences of the United States of America. 109 (36), 14308-14313 (2012).
  13. Doostmohammadi, A., Yeomans, J. M. Coherent Motion of Dense Active Matter. The European Physical Journal Special Topics. 227 (17), 2401-2411 (2019).
  14. Guillamat, P., Ignés-Mullol, J., Sagués, F. Taming active turbulence with patterned soft interfaces. Nature Communications. 8 (1), 564 (2017).
  15. Maryshev, I., Goryachev, A. B., Marenduzzo, D., Morozov, A. Dry active turbulence in microtubule-motor mixtures. arXiv preprint. , (2018).
  16. Nishiguchi, D., Aranson, I. S., Snezhko, A., Sokolov, A. Engineering bacterial vortex lattice via direct laser lithography. Nature Communications. 9 (1), 4486 (2018).
  17. Shendruk, T. N., Thijssen, K., Yeomans, J. M., Doostmohammadi, A. Twist-induced crossover from two-dimensional to three-dimensional turbulence in active nematics. Physical Review E. 98 (1), 010601 (2018).
  18. Urzay, J., Doostmohammadi, A., Yeomans, J. M. Multi-scale statistics of turbulence motorized by active matter. Journal of Fluid Mechanics. 822, 762-773 (2017).
  19. Sanchez, T., Chen, D. T. N., DeCamp, S. J., Heymann, M., Dogic, Z. Spontaneous Motion in Hierarchically Assembled Active Matter. Nature. 491 (7424), 431-434 (2012).
  20. Wu, K. T., et al. Transition from Turbulent to Coherent Flows in Confined Three-Dimensional Active Fluids. Science. 355 (6331), (2017).
  21. Hess, H., et al. Molecular shuttles operating undercover: A new photolithographic approach for the fabrication of structured surfaces supporting directed motility. Nano Letters. 3 (12), 1651-1655 (2003).
  22. Aoyama, S., Shimoike, M., Hiratsuka, Y. Self-organized optical device driven by motor proteins. Proceedings of the National Academy of Sciences of the United States of America. 110 (41), 16408-16413 (2013).
  23. Nicolau, D. V., et al. Parallel computation with molecular-motor-propelled agents in nanofabricated networks. Proceedings of the National Academy of Sciences of the United States of America. 113 (10), 2591-2596 (2016).
  24. Palacci, J., Sacanna, S., Steinberg, A. P., Pine, D. J., Chaikin, P. M. Living Crystals of Light-Activated Colloidal Surfers. Science. 339 (6122), 936-940 (2013).
  25. Morin, A., Bartolo, D. Flowing Active Liquids in a Pipe: Hysteretic Response of Polar Flocks to External Fields. Physical Review X. 8 (2), 021037 (2018).
  26. Lakkaraju, S. K., Hwang, W. Critical Buckling Length versus Persistence Length: What Governs Biofilament Conformation. Physical Review Letters. 102 (11), 118102 (2009).
  27. Henkin, G., DeCamp, S. J., Chen, D. T. N., Sanchez, T., Dogic, Z. Tunable Dynamics of Microtubule-Based Active Isotropic Gels. Philosophical transactions. Series A, Mathematical, physical, and engineering sciences. 372 (2029), 20140142 (2014).
  28. Ross, T. D., et al. Controlling Organization and Forces in Active Matter through Optically-Defined Boundaries. arXiv:1812.09418. , (2018).
  29. Böhm, K. J., Stracke, R., Baum, M., Zieren, M., Unger, E. Effect of temperature on kinesin-driven microtubule gliding and kinesin ATPase activity. FEBS Letters. 466 (1), 59-62 (2000).
  30. Anson, M. Temperature dependence and arrhenius activation energy of F-actin velocity generated in vitro by skeletal myosin. Journal of Molecular Biology. 224 (4), 1029-1038 (1992).
  31. Hong, W., Takshak, A., Osunbayo, O., Kunwar, A., Vershinin, M. The Effect of Temperature on Microtubule-Based Transport by Cytoplasmic Dynein and Kinesin-1 Motors. Biophysical Journal. 111 (6), 1287-1294 (2016).
  32. Kawaguchi, K., Ishiwata, S. I. Thermal activation of single kinesin molecules with temperature pulse microscopy. Cell Motility. 49 (1), 41-47 (2001).
  33. Bate, T. E., Jarvis, E. J., Varney, M. E., Wu, K. T. Collective Dynamics of Microtubule-Based 3D Active Fluids from Single Microtubules. Soft Matter. 15 (25), 5006-5016 (2019).
  34. Tucker, R., et al. Temperature Compensation for Hybrid Devices: Kinesin’s Km is Temperature Independent. Small. 5 (11), 1279-1282 (2009).
  35. Collee, J. G., Bradley, R., Liberski, P. P. Variant CJD (vCJD) and bovine spongiform encephalopathy (BSE): 10 and 20 years on: part 2. Folia Neuropathologica. 44 (2), 102 (2006).
  36. Castoldi, M., Popov, A. V. Purification of brain tubulin through two cycles of polymerization-depolymerization in a high-molarity buffer. Protein Expression and Purification. 32 (1), 83-88 (2003).
  37. Swinehart, D. The Beer-Lambert law. Journal of Chemical Education. 39 (7), 333 (1962).
  38. Ashford, A. J., Andersen, S. S., Hyman, A. A. Preparation of tubulin from bovine brain. Cell biology: A laboratory handbook. 2, 205-212 (1998).
  39. Hyman, A., et al. . Methods in Enzymology. 196, 478-485 (1999).
  40. Baneyx, F. Recombinant protein expression in Escherichia coli. Current Opinion in Biotechnology. 10 (5), 411-421 (1999).
  41. Spriestersbach, A., Kubicek, J., Schäfer, F., Block, H., Maertens, B., Lorsch, J. R. . Methods in enzymology. 559, 1-15 (2015).
  42. Subramanian, R., Gelles, J. Two Distinct Modes of Processive Kinesin Movement in Mixtures of ATP and AMP-PNP. The Journal of General Physiology. 130 (5), 445-455 (2007).
  43. Gasteiger, E., et al. . The proteomics protocols handbook. , 571-607 (2005).
  44. Taylor, S. C., Berkelman, T., Yadav, G., Hammond, M. A Defined Methodology for Reliable Quantification of Western Blot Data. Molecular Biotechnology. 55 (3), 217-226 (2013).
  45. Lau, A. W. C., Prasad, A., Dogic, Z. Condensation of isolated semi-flexible filaments driven by depletion interactions. Europhysics Letters. 87 (4), 48006 (2009).
  46. Chandrakar, P., et al. Microtubule-Based Active Fluids with Improved Lifetime, Temporal Stability and Miscibility with Passive Soft Materials. arXiv:1811.05026. , (2018).
  47. Lowensohn, J., Oyarzún, B., Paliza, G. N., Mognetti, B. M., Rogers, W. B. Linker-mediated phase behavior of DNA-coated colloids. arXiv:1902.08883. , (2019).
  48. Wu, K. T., et al. Polygamous Particles. Proceedings of the National Academy of Sciences of the United States of America. 109 (46), 18731-18736 (2012).
  49. Wu, K. T., et al. Kinetics of DNA-Coated Sticky Particles. Physical Review E. 88 (2), 022304 (2013).
  50. Ouellette, N. T., Xu, H., Bodenschatz, E. A quantitative study of three-dimensional Lagrangian particle tracking algorithms. Experiments in Fluids. 40 (2), 301-313 (2005).
  51. Kelley, D. H., Ouellette, N. T. Using particle tracking to measure flow instabilities in an undergraduate laboratory experiment. American Journal of Physics. 79 (3), 267-273 (2011).
  52. Young, E. C., Berliner, E., Mahtani, H. K., Perez-Ramirez, B., Gelles, J. Subunit Interactions in Dimeric Kinesin Heavy Chain Derivatives That Lack the Kinesin Rod. Journal of Biological Chemistry. 270 (8), 3926-3931 (1995).
  53. Aström, K. J., Murray, R. M. . Feedback systems: an introduction for scientists and engineers. , (2011).
  54. Soni, V., et al. The free surface of a colloidal chiral fluid: waves and instabilities from odd stress and Hall viscosity. arXiv:1812.09990. , (2018).
  55. Harvey, M. Precision Temperature-Controlled Water Bath. Review of Scientific Instruments. 39 (1), 13-18 (1968).
  56. Beuchat, L. R. Influence of Water Activity on Growth, Metabolic Activities and Survival of Yeasts and Molds. Journal of Food Protection. 46 (2), 135-141 (1983).
  57. Block, S. S. . Disinnfection, sterilization, annd preservation. , (2001).
  58. Schumb, W. C., Satterfield, C. N., Wentworth, R. L. . Hydrogen peroxide. , (1955).
  59. Simmons, G. F., Smilanick, J. L., John, S., Margosan, D. A. Reduction of Microbial Populations on Prunes by Vapor-Phase Hydrogen Peroxide. Journal of Food Protection. 60 (2), 188-191 (1997).
  60. Shimoboji, T., Larenas, E., Fowler, T., Hoffman, A. S., Stayton, P. S. Temperature-induced switching of enzyme activity with smart polymer-enzyme conjugates. Bioconjugate chemistry. 14 (3), 517-525 (2003).

Play Video

Cite This Article
Bate, T. E., Jarvis, E. J., Varney, M. E., Wu, K. Controlling Flow Speeds of Microtubule-Based 3D Active Fluids Using Temperature. J. Vis. Exp. (153), e60484, doi:10.3791/60484 (2019).

View Video