Нейронные стволовые/клетки-прародители демонстрируют различную экспрессионную динамику сигнальных компонентов Notch, которые приводят к различным исходам клеточных событий. Такое динамическое выражение может быть выявлено путем мониторинга в реальном времени, а не статического анализа, с использованием высокочувствительной биолюминесценционной системы визуализации, которая позволяет визуализировать быстрые изменения в экспрессии генов.
Сигнализация notch регулирует обслуживание нервных клеток ствола/прародителя взаимодействиями клетки-клетки. Компоненты сигнализации Notch демонстрируют динамическое выражение. Эффектор сигнала Hes1 и Notch ligand Delta-like1 (Dll1) выражены в колебательной манере в нервных стволовых/прагениторных клетках. Поскольку период колебательной экспрессии этих генов очень короткий (2 ч), трудно контролировать их циклическое выражение. Для изучения таких быстрых изменений в экспрессии гена или динамике белка требуется быстрая реакция репортеров. Из-за его быстрой кинетики созревания и высокой чувствительности, биолюминесценция репортер luciferase подходит для мониторинга быстрых изменений экспрессии генов в живых клетках. Мы использовали дестабилизированный репортер люциферазы для мониторинга активности промоутера и luciferase-слитый репортер для визуализации динамики белка с разрешением одной клетки. Эти биолюминесценции репортеры показывают быстрый оборот и генерировать очень слабые сигналы; поэтому мы разработали высокочувствительную систему визуализации биолюминесценции для обнаружения таких слабых сигналов. Эти методы позволяют нам контролировать различные динамики экспрессии генов в живых клетках и тканях, которые являются важной информацией, чтобы помочь понять фактические клеточные состояния.
Мозг млекопитающих состоит из большого количества различных типов нейронов и глиальных клеток. Все клетки генерируются из нервных стволовых / прародителей клеток (NPCs), которые сначала размножаются, чтобы расширить их число, затем начинают дифференцироваться в нейроны, и, наконец, привести к глиальных клеток1,2,3,4,5. После того, как клетки дифференцированы в нейроны, они не могут размножаться или увеличивать их число, и, следовательно, поддержание NpCs до более поздних стадиях имеет важное значение. Прочка сигнализации через ячейки взаимодействия играет важную роль в поддержании NPCs6,7. Выемка лиганды взаимодействуют с мембранным белком, Notch, на поверхности соседних клеток и активирует белок Notch. После активации происходит протеоз белка Notch, тем самым высвобождая внутриклеточное достояние Notch (NICD) из клеточной мембраны в ядро8,9,10. В ядре NICD связывается с областями промотора Hes1 и Hes5 (Hes1/5) и активирует экспрессию этих генов. Hes1/5 подавляют экспрессию проневрюкгенных генов Ascl1 и Neurogenin1 (Neurog1/2)11,12,13,14. Поскольку проневральные гены вызывают дифференциацию нейронов, Hes1/5 играет важную роль в поддержании NPC. Кроме того, поскольку проневрюновые гены могут активировать экспрессию Нотх лиганда Дельта-like1 (Dll1), Hes1/5 также подавляет экспрессию Dll1. Таким образом, выражение Dll1 приводит к тому, что соседние клетки являются отрицательными для Dll1 через Сигнализацию Notch. Таким образом, клетки ингибируют соседние клетки от следующих их же судьбы, явление, известное как боковое ингибирование8. В развивающемся мозге боковое ингибирование играет роль в генерации различных типов клеток.
Визуализация в режиме реального времени на уровне одной клетки показывает динамические выражения компонентов сигнализации Notch вNPC 15,16,17. Прочка сигнализации активизирует выражение Hes1, но Hes1 белка связывается с собственным промоутером и подавляет свое собственное выражение. Кроме того, Hes1 является чрезвычайно нестабильным белком, который деградирует убиквитин-протеасомы пути; поэтому, репрессии своего собственного промоутера только недолго, а затем транскрипция начинается снова. Таким образом, выражение Hes1 колеблется как на транскрипции, так и на переводном уровне в цикле182 ч. Колеблящее выражение Hes1, в свою очередь, индуцирует колебальное выражение нюшенных генов, таких как Ascl1, Neurog2, и Dll1, через периодические репрессии15,16,17,19. В то время как проневральные гены могут вызвать дифференциацию нейронов, их колебательная экспрессия недостаточна для дифференциации нейронов; а их устойчивое выражение имеет важное значение для дифференциации нейронов. Колеблющее выражение проневральных генов важно для поддержания NPC, а не для индуцирования дифференциации нейронов14,15,16. Выражение Dll1 колеблется как на транскрипции, так и на переводном уровне при различных морфогенезах, таких как нейрогенез и сомитогенез. Динамическое выражение Dll1 важно для нормального морфогенеза и устойчивое выражение Dll1 вызывает дефекты в нейрогенезе и сомитогенезе17. Эти выводы демонстрируют важную функцию, которую динамика экспрессии генов и кинетики белка оказывают на регуляцию различных событий развития (т.е. различная динамика экспрессии производит различные выходы в клеточном поведении).
Для анализа динамики сигнализации Notch статического анализа тканей и клеток недостаточно, так как они постоянно меняются. В режиме реального времени изображение одиночных клеток является мощным инструментом для выявления динамики экспрессии генов. Динамическое выражение сигнальных молекул Notch подвергается быстрым циклическим реакциям в период 2-3 ч. Это быстрое периодическое выражение представляет две трудные проблемы для мониторинга в реальном времени: (1) выражение молекул подавляется до низких уровней, и (2) быстрый оборот требует быстрого реагирования репортеров. Чтобы преодолеть эти проблемы, мы ранее разработали метод визуализации биолюминесценции в режиме реального времени20. Поскольку биолюминесценция репортер имеет более высокую чувствительность и короче время созревания, чем флуоресцентные репортеры, эта стратегия позволяет нам контролировать быструю динамику в живых клетках. Используя визуализацию в реальном времени, мы обнаружили, что больше генов обладают динамическим экспрессией, чем мы думали ранее. Кроме того, увеличилось количество сообщений, показывающих экспрессию и белковую динамику в живых клетках и значение этой динамики в различных биологических событиях, что свидетельствует о фундаментальной роли динамики в экспрессиях генов21,22.
В этом отчете мы описываем способ визуализации выражения Notch ligand Dll1 в NPC как в разобщенных культурах, так и в корковых срезанных культурах. Для мониторинга динамики транскрипции Dll1 на уровне одной клетки, мы создали разъединенные культуры NPCs, полученные из эмбрионального теленефалиона трансгенных мышей, несущих pDll1-Ub-Fluc репортер, Dll1 промоутер-управляемый дестабилизированной люциферазы репортер. Для мониторинга динамики белка Dll1 in vivo мы ввели репортера о слиянии Dll1-Fluc в NPC в коре головного мозга и визуализировали экспрессию репортера в NPC в корковых срезанных культурах. Изображения в режиме реального времени позволили нам запечатлеть различные особенности экспрессии генов и белковую динамику в живых клетках с высоким временным разрешением.
Компоненты Нотча сигнализации показывают колеблющиеся выражения синхронно во время сомитогенеза, но из синхронности во время нейрогенеза, что приводит к трудностям в захвате динамики выражения статический анализ в последнем случае. Таким образом, мониторинг в реальном времени необх?…
The authors have nothing to disclose.
Мы благодарим Yumiko Iwamoto за поддержку производства видео. Мы также благодарны Акихиро Исомуре за обсуждение и поддержку анализа изображений, Хитоси Мияти за техническую поддержку для генерации трансгенных животных, Yuji Shinjo (Olympus Medical Science), Масатоси Эгава (Olympus Medical Science), Такуя Исидзу ( Olympus Medical Science) и Уин Кунитаки (Андор Япония) для технической поддержки и обсуждения биолюминесценционной системы визуализации. Эта работа была поддержана Core Research for Evolutional Science and Technology (JPMJCR12W2) (R.K.), Grant-in-Aid for Scientific Research on Innovative Areas (MEXT 24116705 для H.S. и MEXT 16H06480 для R.K.), Grant-in-Aid for Scientific Research (C) (JSPS) (JSPS) 18K06254 ( H.S.), Фонд Такэда (R.K. и H.S.), а также Платформа для динамических подходов к живой системе от Министерства образования, культуры, спорта, науки и техники, Япония.
Bioluminescence Imaging System | |||
Chilled water circulator (chiller) | Julabo | Model: F12-ED | |
Cooled CCD camera | Andor Technology | Model: iKon-M 934 | |
Incubator system | TOKAI HIT | Model: INU-ONICS | |
Inverted microscope | Olympus | Model: IX81 | |
Inverted microscope | Olympus | Model: IX83 | |
LED illumination device | CoolLED | Model: pE1 | |
MetaMorph | MOLECULAR DEVICES | Model: 40000 | |
Mix gas controller | Tokken | Model: TK-MIGM OLO2 | |
Objective lens | Olympus | Model: UPLFLN 40X O | |
Preparations for Dissection | |||
Dissection microscope | Nikon | Model: SMZ-2B | |
Fluorescence stereoscopic microscope | Leica | Model: MZ16FA | |
Fine forceps | DUMONT | INOX No.5 | |
Scissors, Micro scissors | |||
Forceps | |||
Ring-shaped forceps | |||
10-cm plastic petri dish | greiner | 664160-013 | |
35-mm plastic petri dish | greiner | 627160 | |
PBS | Nacalai Tesque | 14249-24 | |
DMEM/F12 | invitrogen | 11039-021 | |
Reagents for NPC dissociation culture | |||
B27 supplement | invitrogen | 12587-010 | |
bFGF | invitrogen | 13256-029 | Stock solution: 1 μg/ml in 0.1% BSA/PBS |
D-luciferin | Nacalai Tesque | 01493-85 | Stock solution: 100mM in 0.9% saline |
DNase | Worthington Biochemical Corporation | LK003172 | Stock solution: 1000U/ml in EBSS |
EBSS | Worthington Biochemical Corporation | LK003188 | |
Glass bottom dish | IWAKI | 3910-035 | |
N2 supplement (100x) | invitrogen | 17502-048 | |
N-acetyl-cystein | Sigma | A-9165-25G | |
Papain | Worthington Biochemical Corporation | LK003178 | Stock solution: 7U/ml in EBSS |
Penicillin/Streptmycine | Nacalai Tesque | 09367-34 | |
Poly-L-lysine | Sigma | P-6281 | 40 mg/ml in DW |
Preparations for in utero electroporation | |||
50-ml syringe | TERUMO | 181228T | |
Electrode | Neppagene | 7-mm | |
Electroporator | Neppagene | CUY21 EDIT | |
Forceps | |||
Gauzes | Kawamoto co. | 7161 | |
Micro capillary | Made in-house | ||
PBS | Nacalai Tesque | 14249-24 | |
Pentbarbital | Kyoritsuseiyaku | Somnopentyl | |
Ring-shaped forceps | |||
Scissors, Micro scissors | |||
Suture needle | Akiyama MEDICAL MFG. CO | F17-40B2 | |
Xylazine | Bayer | Seractal | |
Preparations for Slice culture | |||
10-cm plastic petri dish | greiner | 664160-013 | |
35-mm plastic petri dish | greiner | 627160 | |
Culture insert | Millipore | PICM01250 | |
DMEM/F12 | invitrogen | 11039-021 | |
Fetal Bovine Serum | Sigma | 172012-500ML | |
Fine forceps | DUMONT | INOX No.5 | |
Forceps | |||
Horse Serum | Gibco | 16050-122 | |
Micro surgical knife | Alcon | 19 Gauge V-Lance | |
Multi-gas incubator | Panasonic | MCO-5MUV-PJ | |
N2/B27 media | Made in-house | ref. NPC dissociatioin culture | |
PBS | Nacalai Tesque | 14249-24 | |
Ring-shaped forceps | |||
Scissors, Micro scissors | |||
Silicon rubber cutting board | Made in-house |