Этот протокол представляет собой интегрированную Рамано-масс-масс-спектрометрию (MS), способную достичь одноклеточного разрешения. Раман спектроскопия может быть использована для изучения клеточной реакции на наркотики, в то время как MS может быть использован для целевого и количественного анализа потребления наркотиков и метаболизма.
Клетки, как известно, по своей сути неоднородны в их ответах на наркотики. Поэтому важно, чтобы одноклеточная неоднородность учитывалась в исследованиях по открытию лекарств. Это может быть достигнуто путем точного измерения множества клеточных взаимодействий между клеткой и препаратом на одноклеточном уровне (т.е. потребление наркотиков, метаболизм и эффект). В этой статье описывается одноклеточная Рамана спектроскопия и масс-спектрометрия (MS) платформа для мониторинга метаболических изменений клеток в ответ на наркотики. Используя эту платформу, метаболические изменения в ответ на препарат могут быть измерены Спомощью Рамановской спектроскопии, в то время как препарат и его метаболит можно количественно оценить с помощью масс-спектрометрии в одной клетке. Полученные результаты свидетельствуют о том, что можно получить доступ к информации об усвоении наркотиков, обмене веществ и реакции на одноклеточном уровне.
Клетки по-разному реагируют на изменения в их микроокружении на одноклеточном уровне, явлении, называемом клеточной неоднородностью1. Несмотря на это, текущие исследования открытия наркотиков основаны на средних измерениях популяций клеток, которые запутывают информацию о потенциальных субпопуляциях, а также одноклеточных вариациях2. Эта недостающая информация может объяснить, почему некоторые клетки более восприимчивы к наркотикам, в то время как другие устойчивы. Интересно, что отсутствие одноклеточной информации о реакции препарата является возможной причиной провала фазы II клинических испытаний препаратов3. Поэтому для решения этой проблемы, клеточные взаимодействия с препаратом (т.е. поглощение, метаболизм, и ответ) должны быть измерены на одноклеточном уровне.
Для достижения этой цели мы разработали уникальную систему, в которой живые одиночные клетки проверяются с помощью безэтикетки Рамана спектроскопии, а затем далее характеризуется с помощью масс-спектрометрии4. Раманская спектроскопия обеспечивает молекулярный отпечаток клеточного состояния, сложный спектр в результате вклада многих молекул внутри клетки. Несмотря на эту сложность, можно считать, что отпечатки пальцев Раман отражают структуру всей клетки и метаболизм5,6. Раманская спектроскопия выделяется при измерении клеточных состояний в неинвазивной и относительно высокой пропускной форме, что делает ее полезной для скрининга и оценки реакции препарата на одноклеточном уровне.
В отличие от этого, MS обеспечивает необходимую чувствительность и селективность для измерения усвоения наркотиков на одноклеточном уровне. Поскольку MS является разрушительным (образец «клетки», как правило, потребляется во время анализа), интеграция его с неразрушающей, без этикетки Ребан спектроскопии может обеспечить высокую пропускную и чувствительную систему. Эта комбинированная платформа способна предоставить больше информации о усвоении наркотиков, метаболизме и эффектах на одноклеточном уровне.
Данная рукопись разъясняет протокол, используемый для изучения клеточных взаимодействий с наркотиками на одноклеточном уровне с использованием культур in vitro с помощью интегрированной платформы Raman-MS. Для этого в качестве модели используются клетки гепатоцеллюлярной карциномы (HepG2) и тамоксифен. HepG2 клетки были выбраны потому, что они занимают тамоксифен и усваивают препарат, и они одновременно страдают из-за его гепатотоксического воздействия. В этой рукописи используются два состояния: клетки, обработанные наркотиками, против необработанных клеток (контроль).
В этой рукописи был выбран простой случай, в котором клетки HepG2 были выставлены (или нет) для тамоксифена. Показано способность Раманеспектроскопии и системы масс-спектрометрии контролировать воздействие тамоксифена на клетки. Раманская спектроскопия позволила выявить потенциальные биомаркеры, отражающие общую реакцию отдельных клеток на воздействие наркотиков. Наблюдалась определенная неоднородность между одиночными клетками, что свидетельствует о том, что некоторые клетки не реагируют на воздействие наркотиков. С другой стороны, LSC-MS был способен проводить целенаправленный анализ препарата и его метаболита на одноклеточном уровне, при котором в препарате наблюдалась высокая степень неоднородности и его содержание метаболита. Эта неоднородность помогает объяснить, почему некоторые клетки страдают от наркотиков, а другие, казалось бы, нет, несмотря на клетки, происходящие из якобы равномерной населения12.
Среди конкретных аспектов этого метода, которые требуют внимания, важно оценить качество настройки микроскопа и обработки сигналов для обеспечения воспроизводимости данных. Если предварительная обработка спектра выполняется тщательно, вариации сигнала должны быть максимально максимизированы на локальном максимуме каждого пика. В отличие от этого, базовый уклад и край спектра должны перекрываться между условиями исследуемых ячеек. Другим важным аспектом является многоварная модель, используемая для исследования различий между методами лечения. Необходимо тщательно оценить модели и параметры модели, чтобы обеспечить точный и точный анализ. Одним из преимуществ модели PLS, в отличие от нейронных сетей, является то, что она позволяет получить доступ к весам, связанным с каждой длиной волны (СдвигаМи Рамына), которые лучше всего различают условия, проверенные моделью.
Несмотря на то, что раманская спектроскопия успешно дискриминирует реакцию препарата, следует подчеркнуть, что этот метод ограничен в использовании для обеспечения биологической интерпретации. В основном это связано со сложностью спектрального сигнала, который включает в себя смесь тысяч молекул. Поэтому необходимо провести дальнейшее исследование для оценки систематических различий между спектральной интенсивностью Раман и вариациями концентрации наркотиков. Кроме того, аналогичные исследования других клеточных линий необходимы для оценки обобщения спектральных биомаркеров, связанных с тамоксифеном.
Кроме того, может быть интересно проводить измерения живых тканей для оценки фармакодинамики и изучения того, как наркотики проникают и текут в каждой клетке. Кроме того, следует отметить, что этап выборки в LSC-MS в высокой степени зависит от квалификации оператора. Параметры, такие как пространственное разрешение, положение клеток внутри капилляра после отбора проб, и прочность пропускной силы полностью зависят от оператора, что ограничивает широкомасштабное внедрение LSC-MS. Хотя автоматизированные системы отбора проб могут облегчить эту проблему. Кроме того, в то время как LSC-MS выделяется на выборки приверженцев или плавающих клеток в их родных штатах, он выполняет более плохо в клетках выборки встроенных в секции тканей. Это связано с тенденцией отбора капилляров разорвать, если плотность образца высока. Таким образом, другой подход, такой как один зонд может быть более подходящим в таких случаях14,15.
Поскольку используемые здесь ячейки пробы взяты в условиях окружающей среды с минимальной подготовкой образца, LSC-MS может быть легко интегрирован с другими технологиями, о чем свидетельствует его интеграция с Раманом в этом протоколе. Еще одна подобная интеграция с 3D голографией позволила достичь абсолютной количественной оценки клеточных метаболитов на субклеточном уровне16. Кроме того, интеграция с цитометрией потока позволила обнаружить метаболические биомаркеры в отдельных циркулирующих опухолевых клетках больных раком нейробластомы17,18.
В будущем, в связи с недавним растущим интересом к объединению наборов данных из методов визуализации19,может также представлять интерес изучение систематических различий между рамаными сигналами и результатами масс-спектрометрии (а также другими методами омики) с помощью интегративных вычислительных подходов. Интересно, что мы уже нашли несколько слабых, но значительных линейных корреляций между интенсивностью пиков Раман определены VIP баллов и обилие тамоксифена или его метаболита на одноклеточном уровне, как определено MS4. Эти данные могут свидетельствовать о метаболической взаимосвязи между профилями MS и спектрами Раман и возможности предсказать эти значения.
The authors have nothing to disclose.
Авторы благодарят Тосио Янагиду за поддержку и внутренние совместные фонды RIKEN, приписываемые доктору Арно Гермонду.
0.1% penicillin-streptomycin | Nacalai Tesque | 09367-34 | |
35mm glass bottom grid dish | Matsunami | ||
4-Hydroxy Tamoxifen standard | Sigma-Aldrich | 94873 | |
532 nm diode pumped solid-state laser | Ventus, Laser Quantum | ||
BIOS-L101T-S motorized microscope stage | OptoSigma | ||
CT-2 cellomics coated sampling capillaries | HUMANIX | ||
d5-Tamoxifen standard | Cambridge Isotope Laboratories | ||
Dimethyl sulfoxide LC-MS grade | Nacalai Tesque | D8418 | |
Dulbecco's Modified Eagle's medium | Sigma-Aldrich | D5796 | |
Eppendorf GELoader tips | Eppendorf | ||
fetal bovine serum | Hyclone laboratories | SH3006603 | |
FluoroBrite DMEM | Thermo Fisher Scientific | ||
Formic acid LC-MS grade | Sigma-Aldrich | 33015 | |
HepG2 cell line (RCB1886) | RIKEN cell bank center | RCB1886 | |
MC0-19A1C Incubator | Sanyo Electric Co. | MC0-19A1C | |
Methanol LC-MS grade | Sigma-Aldrich | 1060352500 | |
MMO-203 3-D Micromanipulator | Narshige | MMO-203 | |
NA:0.95, UPL40 water-immersion Olympus objective lens | Olympus | ||
Nanoflex nano-ESI adaptor | Thermo Fisher Scientific | ES071 | |
On-stage incubator | ibidi | ||
Pierce LTQ Velos ESI calibration solution | Thermo Fisher Scientific | 88323 | |
PIXIS BR400 cooled CCD camera | Princeton Instruments | ||
Q-Exactive Orbitrap | Thermo Fisher Scientific | ||
Rat-tail collagen coating solution | Cell Applications Inc. | ||
Tamoxifen standard | Sigma-Aldrich | 85256 |