Se describe un método nativo de mancha occidental para analizar la dmerización del factor regulador de interferón endógeno 5 en la línea de células dendríticas plasmáticas CAL-1. Este protocolo también se puede aplicar a otras líneas de celda.
El factor regulador del interferón 5 (IRF5) es un factor de transcripción clave para regular la respuesta inmunitaria. Se activa aguas abajo de la vía de señalización de la respuesta primaria de diferenciación mieloide similar al de peaje 88 (TLR-MyD88). La activación de IRF5 implica fosforilación, dimerización y posterior translocación del citoplasma al núcleo, lo que a su vez induce la expresión génica de varias citoquinas proinflamatorias. Un ensayo de detección para la activación de IRF5 es esencial para estudiar las funciones IRF5 y sus vías relevantes. Este artículo describe un ensayo robusto para detectar la activación endógena de IRF5 en la línea de células dendríticas (pDC) plascitoide humanas CAL-1. El protocolo consiste en un ensayo de electroforesis no desnaturalizador modificado que puede distinguir IRF5 en sus formas monómero y dimer, proporcionando así un enfoque asequible y sensible para analizar la activación IRF5.
El factor regulador del interferón 5 (IRF5) es un importante regulador de la transcripción que desempeña un papel destacado en la regulación de la respuesta inmunitaria, particularmente en la liberación de citoquinas proinflamatorias e interferones de tipo I (IFN)1,2 ,3. La desregulación de IRF5 es un factor que contribuye a numerosas enfermedades autoinmunes, como lo demuestran varios polimorfismos en el locus IRF5 que están asociados con lupus eritematoso sistémico, esclerosis múltiple, artritis reumatoide,etc. 4, 5,6,7,8,9,10. Por lo tanto, un ensayo de detección robusto para el estado de activación endógeno IRF5 es crucial para entender las vías regulatorias y los efectos posteriores de IRF5 en un contexto celular fisiológicamente relevante.
IRF5 se expresa constitutivamente en monocitos, células dendríticas (CC), células B y macrófagos1,11. Al igual que con otros factores de transcripción de la familia IRF, IRF5 reside en el citoplasma en su estado latente. Tras la activación, IRF5 es fosforilado y forma homodímeros, que luego se trasladan al núcleo y se unen a elementos reguladores específicos de genes que codifican IFN de tipo I y citoquinas proinflamatorias, induciendo finalmente la expresión de estos genes1 ,2,11,12,13. IRF5 regula las respuestas inmunitarias innatas aguas abajo de varios receptores similares a los peajes (TLR), como TLR7, TLR 8 y TLR 9, que se localizan en endosomas y utilizan MyD88 para la señalización1,11,14. Estos TLR reconocen principalmente especies de ácido nucleico extraños como EL ARN de una sola cadena (ssRNA) y el ADN CpG no metilado que son sintomáticos de una infección15,16,17,18. IRF5 ha demostrado regular las respuestas inmunitarias contra infecciones bacterianas, virales y fúngicas19,20,21. Teniendo en cuenta el papel influyente y diverso de IRF5 en el sistema inmunológico, mejorar o amortiguar la actividad del IRF5 podría servir como una vía novedosa para el desarrollo de agentes terapéuticos22. Por lo tanto, es fundamental desarrollar un protocolo para monitorear el estado de activación del IRF5 endógeno para permitir una investigación exhaustiva de las vías y mecanismos que regulan la actividad de IRF5 en diferentes tipos de células.
Hasta nuestro conocimiento, no se ha publicado ningún ensayo electroforético bioquímico o gel para la activación endógena de IRF5 antes del desarrollo de este protocolo. Se ha demostrado que la fosforilación es un primer paso importante de la activación del IRF5, y se desarrolló un anticuerpo fosfoespecífico IRF5 que condujo al descubrimiento y confirmación de un residuo de serina importante para la actividad13de IRF5. Sin embargo, mientras que el anticuerpo detecta claramente iRF5 fosforilado cuando se inmunoprecipita o sobreexpresa23, no detecta la fosforilación IRF5 en un lisato de células enteras en nuestras manos (datos no mostrados). La dimerización es el siguiente paso de la activación iRF5, y muchos estudios importantes hasta la fecha que investigan este paso se basaron en la sobreexpresión de IRF5 etiquetado con epítopos, a menudo en tipos de celda irrelevantes que normalmente no expresan IRF511,12 ,24,25. Estudios anteriores han demostrado que el Dimerizado IRF5 no siempre puede translocaren en el núcleo y por lo tanto no está necesariamente completamente activado25,26. Se desarrolló un ensayo para la localización nuclear endógena IRF5 para evaluar la activación de IRF5 mediante la citometría de flujo de imágenes27. Este ensayo se ha aplicado en estudios que fueron cruciales para entender la actividad del IRF5, especialmente en los tipos de células primarias o raras28,29 y avanzaron en gran medida el conocimiento en el campo. Sin embargo, este ensayo se basa en un instrumento especializado que no está ampliamente disponible para los investigadores. Además, a menudo es necesario investigar los pasos iniciales de la activación mientras se disecciónn las vías reguladoras IRF5 y se identifican los reguladores ascendentes y los componentes de la vía. Este estudio proporciona un ensayo bioquímico robusto y fiable para los eventos de activación temprana de IRF5 que se puede realizar en laboratorios equipados con herramientas de biología molecular. El protocolo descrito aquí será muy útil para investigar las vías y mecanismos de las acciones iRF5, especialmente cuando se combina con ensayos ortogonales como el análisis citométrico del flujo de imágenes de la localización nuclear IRF523, 27,28,30.
La electroforesis nativa de gel de poliacrilamida (PAGE nativa) es un método ampliamente utilizado para analizar complejos proteicos31,32. A diferencia de la electroforesis de gel de poliacrilamida de dodecilosulfato sódico (SDS-PAGE), PAGE nativa separa las proteínas en función de su forma, tamaño y carga. También conserva la estructura proteica autóctona sin desnaturalización31,33,34,35. El protocolo presentado aprovecha estas características de PAGE nativo y detecta las formas monoméricas y diminutas de IRF5. Este método es particularmente importante para detectar eventos de activación temprana porque no hay ningún anticuerpo disponible comercialmente adecuado que pueda detectar IRF5 fosforilado endógeno. Anteriormente, varios estudios publicados utilizaban PAGE nativo para evaluar la dimización de IRF5. Sin embargo, la mayoría de estos estudios dependían de la sobreexpresión de IRF5 con etiqueta epitope exógena para analizar el estado de activación2,13,24,36,37 . Este trabajo presenta un protocolo paso a paso para analizar la dimización endógena IRF5 a través de una técnica PAGE nativa modificada en una línea de célula dendrítica plasmacitoide humana (pDC), donde se ha demostrado que la actividad IRF5 es crucial para su función1, 38,39,40. Esta misma técnica se ha aplicado a otras líneas celulares23.
El protocolo descrito aquí es un PAGE nativo modificado que distingue las formas monoméricas y dimericas de IRF5 endógeno. Ha habido pocos estudios que informan de la detección de activación endógena IRF5 utilizando la técnica especializada de citometría de flujo de imágenes23,27,28,30. Este protocolo utiliza una técnica común y reactivos y herramientas comunes para evaluar el estado…
The authors have nothing to disclose.
El trabajo fue apoyado por la financiación de la Fundación Croucher y los fondos de inicio de la Universidad de la Ciudad. Agradecemos a todos los miembros del laboratorio Chow por su ayuda con el experimento y la lectura crítica del manuscrito.
2-Mercaptoethanol | Life Technologies, HK | 21985023 | |
300 W/250 V power supply 230 V AC | Life Technologies, HK | PS0301 | |
Anti-IRF5 antibody | Bethyl Laboratories, USA | A303-385 | |
BIOSAN Rocker Shaker (cold room safe) | EcoLife, HK | MR-12 | |
EDTA Buffer, pH 8, 0.5 M 4 X 100 mL | Life Technologies | 15575020 | |
Glycerol 500 mL | Life Technologies | 15514011 | |
Glycine | Life Technologies, HK | 15527013 | |
Goat anti-Mouse IgG DyLight 800 Conjugated Antibody | LAB-A-PORTER/Rockland, HK | 610-145-002-0.5 | |
Goat anti-Rabbit IgG DyLight 800 Conjugated Antibody | LAB-A-PORTER/Rockland, HK | 611-145-002-0.5 | |
Halt protease inhibitor cocktail (100x) | Thermo Fisher Scientific, HK | 78430 | |
HEPES | Life Technologies, HK | 15630080 | |
LI-COR Odyssey Blocking Buffer (TBS) | Gene Company, HK | 927-50000 | |
Mini Tank blot module combo; Transfer module, accessories | Life Technologies, HK | NW2000 | |
NativePAGE 3-12% gels, 10 well kit | Life Technologies, HK | BN1001BOX | |
NativePAGE Running Buffer 20x | Life Technologies, HK | BN2001 | |
NativePAGE Sample Buffer 4x | Life Technologies, HK | BN2003 | |
NP-40 Alternative, Nonylphenyl Polyethylene Glycol | Tin Hang/Calbiochem, HK | #492016-100ML | |
PBS 7.4 | Life Technologies, HK | 10010023 | |
Polyvinylidene difluoride (PVDF) membrane | Bio-gene/Merck Millipore, HK | IPFL00010 | |
Protein assay kit II (BSA) | Bio-Rad, HK | 5000002 | |
R848 | Invivogen, HK | tlrl-r848 | |
RPMI 1640 | Life Technologies, HK | 61870127 | |
Sodium Chloride | ThermoFisher | BP358-1 | |
Sodium deoxycholate ≥97% (titration) | Tin Hang/Sigma, HK | D6750-100G | |
Tris | Life Technologies, HK | 15504020 | |
TWEEN 20 | Tin Hang/Sigma, HK | #P9416-100ML |