La curcumine est un fluorophore idéal pour l’étiquetage et l’imagerie des plaques de protéines bêta amyloïdes dans le tissu cérébral en raison de sa liaison préférentielle à la protéine bêta amyloïde ainsi que ses similitudes structurelles avec d’autres colorants de liaison amyloïdes traditionnels. Il peut être utilisé pour étiqueter et imager les plaques de protéines bêta-amyloïdes plus efficacement et à peu de frais que les méthodes traditionnelles.
Le dépôt de la protéine bêta amyloïde (A) dans les espaces extra- et intracellulaires est l’une des pathologies caractéristiques de la maladie d’Alzheimer (MA). Par conséquent, la détection de la présence de l’A dans le tissu cérébral de la MA est un outil précieux pour le développement de nouveaux traitements pour prévenir la progression de la MA. Plusieurs colorants de liaison amyloïdes classiques, fluorochrome, sondes d’imagerie, et des anticorps spécifiques à aa ont été utilisés pour détecter ahistochimiquement dans le tissu cérébral DeA. L’utilisation de ces composés pour la détection de l’A est coûteuse et prend beaucoup de temps. Cependant, en raison de son activité fluorescente intense, de sa forte affinité et de sa spécificité pour l’A, ainsi que des similitudes structurelles avec les colorants de liaison amyloïdes traditionnels, la curcumine (Cur) est un candidat prometteur pour l’étiquetage et l’imagerie des plaques A en post mortem tissu cérébral. C’est un polyphénol naturel de l’herbe Curcuma longa. Dans la présente étude, Cur a été utilisé pour étiqueter histochimiquement plaques A à partir à la fois d’un modèle de souris génétiques de 5x maladie d’Alzheimer familiale (5xFAD) et à partir de tissu aD humain dans une minute. La capacité d’étiquetage de Cur a été comparée aux colorants de liaison amyloïdes conventionnels, tels que le thioflavine-S (Thio-S), le rouge du Congo (CR) et le Fluoro-jade C (FJC), ainsi que les anticorps spécifiques à l’A (6E10 et A11). Nous avons observé que Cur est le moyen le plus peu coûteux et le plus rapide d’étiqueter et d’imager les plaques A par rapport à ces colorants conventionnels et est comparable aux anticorps spécifiques à l’A. En outre, Cur se lie à la plupart des espèces de a, comme les oligomères et les fibrilles. Par conséquent, Cur pourrait être utilisé comme l’agent de détection fluorochrome le plus rentable, simple et rapide pour les plaques A.
La maladie d’Alzheimer (MA) est l’un des troubles neurologiques les plus fréquents, liés à l’âge et progressifs et l’une des principales causes de décès dans le monde1,2. L’apprentissage, la mémoire, et l’affaiblissement de cognition, avec des désordres neuropsychiatriques, sont les symptômes communs manifestés dans AD3. Bien que l’étiologie de la MA n’ait pas été entièrement élucidée, les preuves génétiques, biochimiques et expérimentales disponibles indiquent que le dépôt progressif de l’A est un biomarqueur définitif pour l’AD4. Cette protéine mal repliée s’accumule dans les espaces intracellulaires et extracellulaires et est pensé pour être impliqué dans la perte synaptique, la neuroinflammation accrue, et la neurodégénérescence dans les régions corticales et hippocampal dans le cerveau affecté par AD5. Par conséquent, la détection histochimique de l’A dans le tissu de la MA est une première étape cruciale dans le développement de médicaments anti-amyloïdes non toxiques pour prévenir la progression de la MA.
Au cours des dernières décennies, plusieurs colorants et anticorps ont été utilisés par de nombreux laboratoires de recherche pour étiqueter et imager les plaques A dans les tissus cérébraux, mais certaines de ces méthodes prennent beaucoup de temps et les colorants ou anticorps utilisés sont coûteux, nécessitant plusieurs accessoires Produits chimiques. Par conséquent, le développement d’un moyen peu coûteux de détection des plaques A dans le cerveau AD serait un nouvel outil bienvenu. De nombreux laboratoires ont commencé à utiliser Cur, un polyphénol naturel anti-amyloïde prometteur, pour l’étiquetage et l’imagerie A, ainsi qu’un agent thérapeutique pour AD6,7,8,9. Son hydrophobicité et sa nature lypophile, ses similitudes structurelles avec les colorants reliure smyloïdes classiques, sa forte activité fluorescente, ainsi qu’une forte affinité pour se lier à aô en fait un fluorophore idéal pour l’étiquetage et l’imagerie des plaques Adans le tissu AD10 . Cur se lie avec des plaques aet et des oligomères et sa présence est également détectée dans les espaces intracellulaires7,11,12,13. En outre, il a été démontré que des quantités minimales (1 à 10 nM) de Cur peuvent étiqueter les plaques A dans 5x tissus cérébraux familiaux de la maladie d’Alzheimer (5xFAD)7. Bien que la concentration de 1 nM ne fournit pas l’intensité optimale de fluorescence pour le comptage des plaques de l’A, une concentration de 10 nM ou plus de Cur ne. Ran et ses collègues14 ont signalé que des doses aussi faibles que 0,2 nM de Cur dérivée du difluoroboron peuvent détecter des dépôts in vivo a presque aussi bien qu’une sonde infrarouge. Il n’est pas encore clair si cette dose est suffisante pour étiqueter les plaques Adans les tissus. La plupart des études antérieures ont utilisé 20 à 30 min pour tacher les plaques de l’A à l’aide de Cur, mais une coloration optimale peut nécessiter beaucoup moins de temps.
La présente étude a été conçue pour tester le temps minimum requis par Cur pour étiqueter les plaques A dans le tissu cérébral de l’AD et pour comparer la sensibilité à l’étiquetage et à l’imagerie des plaques A dans le tissu cérébral des souris 5xFAD après coloration avec Cur avec d’autres Les colorants liés à l’A, tels que Thioflavin-S (Thio-S), Congo red (CR) et Fluoro-jade C (FJC). La capacité d’étiquetage de l’A mD de ces colorants de liaison amyloïdes classiques a été comparée à la coloration De Cur dans les sections du cerveau coronal incorporées à la paraffine et cryostat de souris 5xFAD et de la MA humaine et du tissu cérébral de contrôle. Les résultats suggèrent que Cur étiquettes plaques A d’une manière similaire aux anticorps spécifiques à a (6E10) et modérément mieux que Thio-S, CR, ou FJC. En outre, lorsque des injections intrapéritones de souris Cur à 5xFAD ont été administrées pendant 2 à 5 jours, elle a traversé la barrière hémato-encéphalique et a été liée avec des plaquesA7. Fait intéressant, les concentrations nanomolaires de Cur ont été utilisées pour étiqueter et imager les plaques A dans le tissu cérébral 5xFAD7,14. De plus, les plaques a- morphologiquement distinctes, telles que les plaques de noyau, de neuritique, diffuses et brûlées, peuvent être étiquetées par Cur plus efficacement qu’avec n’importe lequel des autres colorants amyloïdes conventionnels7. Dans l’ensemble, la curpeut-être peut être appliquée à l’étiquette et à l’image des plaques adans le tissu cérébral post-mortem à partir de modèles animaux AD et/ou de tissus ad humains d’une manière facile et peu coûteuse, comme une alternative fiable aux anticorps spécifiques à l’A.
Notre hypothèse était que Cur pourrait être utilisé comme le moyen le plus rapide, le plus facile et le moins coûteux d’étiqueter et d’imager les plaques A-A dans le tissu cérébral admatésique post mortem par rapport à d’autres colorants de liaison amyloïdes classiques, ainsi qu’à des anticorps spécifiques à l’A. Les objectifs de cette étude étaient de déterminer le temps minimum requis pour étiqueter et imager les plaques A par Cur dans le tissu cérébral post mortem AD et de déterminer si Cur peut ?…
The authors have nothing to disclose.
Le soutien à cette étude est venu de l’Institut de neurosciences de terrain de l’Ascension de St. Mary’s.
4′,6-diamidino-2-phenylindole (DAPI) | IHC world, Woodstock, MD | ||
Aanimal model of Alzheimer's disease | Jackson's laboratory, Bar Harbor, ME | ||
Absolute alcohol | VWR,Radnor, PA | ||
Alexa 594 | Santacruz Biotech, Dallas, TX | ||
Antibody 6E10 | Biolegend, San Diego, CA | ||
Antibody A11 | Millipore, Burlington, MA | ||
Compound light microscope | Olympus, Shinjuku, Japan | Olympus BX51 | |
Congo red | Sigma, St. Louis, MO | ||
Cryostat | GMI, Ramsey, MN | LeicaCM1800 | |
Curcumin | Sigma, St. Louis, MO | ||
Disodium hydrogen phosphate | Sigma, St. Louis, MO | ||
Dystyrene plasticizer xylene | BDH, Dawsonville, GA | ||
Filter papers | Fisher scientific, Pittsburgh, PA | ||
Hoechst-33342 | Sigma, St. Louis, MO | ||
Inverted fluorescent microscope | Leica, Buffalo Grove, IL | Leica DMI 6000B | |
Inverted fluorescent microscope | Olympus, Shinjuku, Japan | Olympus 1×70 | |
Normal goat serum | Sigma, St. Louis, MO | ||
Paraffin | Sigma, St. Louis, MO | ||
Paraformaldehyde | Sigma, St. Louis, MO | ||
Ploy-lysine coated charged glass slide | Globe Scientific Inc, Mahwah, NJ | ||
Potassium chloride | Sigma, St. Louis, MO | ||
Potassium dihydrogen phosphate | Sigma, St. Louis, MO | ||
Sodium azide | Sigma, St. Louis, MO | ||
Sodium chloride | Sigma, St. Louis, MO | ||
Sodium hydroxide | EMD Millipore, Burlington, MA | ||
Sodium pentobarbital | Vortex Pharmaceuticals limited, Dearborn, MI | ||
Thioflavin-S | Sigma, St. Louis, MO | ||
Triton-X-100 | Sigma, St. Louis, MO | ||
Xylene | VWR,Radnor, PA |