このプロトコルの目的は、DNA折り紙ナノ構造上の分子モーターのアンサンブルを形成し、全内部反射蛍光顕微鏡を使用してアンサンブル運動性を観察することです。
細胞骨格モーターは、有人化、貨物輸送、細胞運動性など、真核細胞の多種多様な機能を担っています。これらの機能の多くは、アンサンブルで動作するモーターを必要とします。個々の細胞骨格モーターのメカニズムに関する豊富な知識にもかかわらず、モーターアンサンブルのメカニズムと出現する挙動については比較的知られていない。モータ番号、位置、および構成を変更します。構造DNAナノテクノロジー、およびDNA折り紙の特定の技術は、モーターアンサンブルの明確に定義されたアーキテクチャの分子構造を可能にします。貨物構造の形状だけでなく、構造上のモーターの種類、数、配置はすべて制御することができます。ここでは、これらのアンサンブルを生成し、全内部反射蛍光顕微鏡を使用してそれらを観察するための詳細なプロトコルを提供します。これらの技術は細胞骨格モーターに特異的に適用されているが、この方法は、そのタスクを達成するために複合体で組み立てる他のタンパク質に一般化可能である。全体的に、運動タンパク質の明確に定義されたアンサンブルを作成するためのDNA折り紙法は、出現した運動挙動につながるメカニズムを解剖するための強力なツールを提供します。
ダインとキネシンは、真核細胞1における無数の機能を担う細胞骨格運動タンパク質である。ATP加水分解の化学エネルギーを生産的な作業に変換することにより、これらのモーターは微小管に転移し、様々な細胞内貨物を運搬し、分配します。また、人芽細胞に関連する大規模な細胞内再配列を調整し、染色体の位置決めと分離に寄与するオーケストレーション力を示します。単一分子観測を含む構造、生化学的、および生物物理学的アッセイは、個々のレベルでこれらのモータのメカニズムを明らかにしました(前の研究2、3、4でよくレビューされています)。しかし、モータのタスクの多くは、類似および混合モータタイプの両方の小さなアンサンブルで動作する必要があります。比較的少ないこれらのアンサンブル5、6の活動と究極の出現運動性を調整するメカニズムについて理解されている。このナレッジ ギャップは、モータの種類やコピー番号など、制御可能なフィーチャを持つアンサンブルを作成するのが難しいためです。この問題を解決するために、過去10年間にわたり、DNA折り紙の分子構築技術が採用されてきました。微小管ベースのモータについては、これらの調査のいくつかの例は、細胞質のダイネイン-17、8、9、イントラフラペラジネイン11、およびイントラフラペラジネインのアンサンブルの単一分子観察を含む。様々なキネシンモータ12、13、およびダイニンとキネシンの混合物7、14、15。ここでは、酵母7、16、17、18、19、20、およびからモータの精製およびオリゴヌクレオチド標識の詳細を提供する。調合性コンプライアンス8を用いたセグメント化されたDNA折り紙の折りたたみおよび精製、およびシャーシ構造7、18を推進する酵母モーターのイメージング。
インビトロ単一分子観察のためのモータアンサンブルを構築するには、3つの主要な努力が必要です。第1は、DNA折り紙に付着するのに適したモータ構造体の発現、精製、標識である。2つ目は、定義されたDNA折り紙構造(しばしば「シャーシ」と呼ばれます)の製造と精製です。そして3つ目は、全内部反射蛍光(TIRF)顕微鏡を用いた観察に続いて、シャシー構造へのモータの結合です。ここでは、酵母サッカロマイセスセレビシエ7、16、17、18から精製された組換え微小管ベースのモータクルに対するこのプロセスのための確立されたプロトコルを提供します。19.DNA折り紙ベースのモーターアンサンブルは、組換えキネシン15とダイン7、8、18の両方の構造を用いて調査されたこの酵母発現システム16 ,17,18,19.このプロトコルは、ガラクトース誘導プロモーターによって制御され、精製(ZZおよびTEVプロテアーゼリンカー)およびDNAオリゴ結合(SNAPtag)のために同じタンパク質タグに融合することを考えると、これらの構造体に有効です。
特定の酵母株は、特定のモータ構造を生成します。例えば、貨物コンプライアンスの役割を研究するために使用されるダインは、株RPY10847,8から精製した。一般に、発現および精製のための適切な遺伝子改変を有するモータ構造を含む株は、それらのモータの使用を公表した実験室から要求することができる。突然変異やタグなどの新しい属性を持つ構造体は、酢酸リチウム変換21および市販キットなどの組換え遺伝的技術を用いて作ることができる。単一分子研究のための酵母中の修飾運動タンパク質を作成するための詳細なプロトコルが19に発表されました。SNAPtagに融合されるモータに加えて、モーターのラベルに使用されるオリゴは、SNAP基板、ベンジルグアニン(BG)に結合する必要があります。以前に公開されたプロトコルは、BG-オリゴコンジュゲート18の形成および精製について説明する。ここで説明する全体的な戦略は、アクチンベースのモータ(例えば22、23、24)、および他の生物および発現システムから精製されたモーター(前を参照)にも採用されている(例 7,9,10,11,12,13,14)
重合された微小管(MT)は、2つの異なる手順でこれらの実験で使用される。機能性モータのMTアフィニティ精製には、他の機能基にラベル付けされていないMTが必要ですが、モータアンサンブル運動性TIRFアッセイにはビオチンおよび蛍煙素で標識されたMTが必要です。いずれの場合も、T は退化を防ぐためにタキソルで安定化されます。MTアフィニティ精製ステップは、これらのモータがシャーシに結合した場合にアンサンブルの運動性を変更できるため、高いMTアフィニティを持つ非運動性モータを除去するために使用されます。このプロセスの間、アクティブモーターはMTをバインド解除し、溶液中に残り、タイト結合モータはMTペレットでスピンダウンします。これにより、シャーシ上のすべてのモータがアクティブな集団から確実に使用されます。
様々なDNA折り紙構造は、細胞骨格運動アンサンブルを研究するために使用されています。アンサンブル輸送の機械的理解が深まるにつれて、実験で用いられるDNA折り紙構造は複雑化しています。原理的には、モーターおよび蛍煙素のための一本鎖DNA付着部位を含むように変更されていれば、任意の構造がこの目的に適応することができる。特定のシャーシの設計と属性は、モーターアンサンブルの出現動作に関する特定の質問を調査するのに役立ちます。例えば、硬質ロッドは、ダイネインとキネシン7、15、18、および2Dプラットフォームのチームによる輸送にコピー数がどのように影響するかについての基礎知識を開発するために使用され、ミオシンアンサンブルを研究するために使用されてきました。アクチンネットワークのナビゲーション22.可変的または調節不可能な柔軟性を持つ構造は、モータ間の弾性カップリングの役割を理解し、ステッピング同期が運動性8、24にどのように影響するかを調けるために使用されています。最近では、運動トラック結合に対する幾何学的制約が運動性25のダイナミクスにどのように影響するかを知るために球状構造が使用されている。
このプロトコルでは、可変剛性を持つセグメントシャーシ上のアンサンブル実験のための特定のステップを提供します。シャーシ上の結合部位は「ハンドル」と呼ばれることがありますが、これらのハンドルを結合する相補的なDNA配列は「アンチハンドル」と呼ばれます。これらのシャーシ上のモータの数は、オリゴ標識モーター上のアンチハンドルオリゴに相補性を持つ拡張ハンドルステープルを含むセグメントによって決定されます。異なるセグメントで異なるハンドルシーケンスを使用すると、異なるタイプのモータをシャーシ上の特定の位置にバインドできます。ここで詳述するシャーシは、7つのシーケンシャルリジッドセグメントで構成され、それぞれが2つの同心円リング8に配置された12本の二本鎖DNAヘリクスで構成されています。剛性セグメントにはモータハンドルが含まれており、フレキシブルな一本鎖DNAまたは硬質二本鎖DNA(それぞれ「リンカー」ステープルの不在または存在に応じて)に接続される領域を介して接続されます。シャーシ構造の準拠は、これらの「リンカー」ステープルの有無によって決まります。詳細と特定のDNA配列については、以前のレポートを参照してください8.さらに、シャーシ26を浄化するために複数の方法を使用することができます。レートゾーングリセロール勾配遠心分離法27をここに記載する。
DNA折り紙の分子構築技術は、定義されたアーキテクチャ、モータ番号、およびタイプを持つモータアンサンブルを構築するユニークな方法を提供し、特定のモータ構成から出現する挙動の研究を可能にする31。構造および細胞の研究がチームで働く細胞骨格モーターの例を解明し続けるにつれて、アンサンブルのモーターの生物物理学的および生化学的メカニズムを分離し?…
The authors have nothing to disclose.
セグメント化されたDNA折り紙シャーシの技術に貢献してくださったK.チャウ、J.モーガン、A.ドリラー・コランジェロに感謝します。我々はまた、レック・ピーターソンとシー研究所の元メンバーに対し、これらの技術の本来の発展に役立った議論と貢献に感謝する。私たちは、J.ウォペレイスとスミス・カレッジ・センター・オブ・顕微鏡・イメージング・L・ビアウェルトとスミス・カレッジ分子生物学センターに感謝します。我々は、TIRF顕微鏡の取得のためのNSF MRIプログラムに感謝します。
2 mL Round Bottom Tube | USA Scientific | 1620-2700 | |
Biotin labeled tubulin protein: porcine brain, >99% pure | Cytoskeleton.com | T333P-A | |
Biotin-BSA | Sigma | A8549-10MG | |
Bottle Assembly, Polycarbonate, 250 mL, 62 x 120 mm | Beckman Coulter | 356013 | |
Bottle, with Cap Assembly, Polycarbonate, 10.4 mL, 16 x 76 mm | Beckman Coulter | 355603 | |
Centrifugal Filter Unit | Millipore Sigma | UFC30VV00 | |
IgG Sepharose 6 Fast Flow, 10 mL | GE Healthcare | 17096901 | |
Micro Bio-Spin Chromatography Columns, empty | Bio-Rad | 7326204EDU | |
P8064 Scaffold | Tilibit | 2 mL at 400nM | |
Poly-Prep Chromatography Columns | Bio-Rad | 731-1550 | |
ProTev Protease | Promega | V6101 | |
Scotch Double Sided Tape with Dispenser | amazon.com | N/A | |
Sephacryl S-500 HR | GE Healthcare | 17061310 | |
Streptavidin | Thermo Fisher | 434302 | |
SYBR Safe DNA stain | Invitrogen | ||
Tubulin protein (>99% pure): porcine brain | Cytoskeleton.com | T240-B | |
Tubulin, HiLyte 647 | Cytoskeleton.com | TL670M-A | |
Ultra-Clear Centrifuge Tubes | Beckman Coulter | 344090 |