Wir stellen eine Methodik vor, um die Bestäubungsanforderungen vonAprikosensorten (Prunus armeniaca L.) zu ermitteln, die die Bestimmung der Selbstverträglichkeit durch Fluoreszenzmikroskopie mit der Identifizierung des S-Genotyps durch PCR-Analyse kombinieren.
Die Selbstinkompatibilität in Rosaceae wird durch ein Gametophytic Self-Incompatibility System (GSI) bestimmt, das hauptsächlich vom multiallelic locus S gesteuert wird. In Der Aprikosen-Aprikosen-Beziehung wird die Bestimmung von Selbst- und Inter-(In-)Kompatibilitätsverhältnissen immer wichtiger, da die Freisetzung einer bedeutenden Anzahl neuer Sorten zu einer Zunahme von Sorten mit unbekannten Bestäubungsanforderungen geführt hat. Hier beschreiben wir eine Methodik, die die Bestimmung der Selbstverträglichkeit durch Handbestäubungen und Mikroskopie mit der Identifizierung des S-Genotypsdurch PCR-Analyse kombiniert. Zur Selbst-(In-)Kompatibilitätsbestimmung wurden im Ballonstadium aus jeder Sorte Blumen aus jeder Sorte gesammelt, im Labor von Hand bestäubt, fixiert und mit Anilineblau für die Beobachtung des Pollenrohrverhaltens unter der Fluoreszenzmikroskopie gefärbt. Für die Herstellung von Inkompatibilitätsbeziehungen zwischen Sorten wurde DNA aus jeder Sorte Saus jungen Blättern extrahiert und S-Allele wurden von PCR identifiziert. Dieser Ansatz ermöglicht die Einrichtung von Inkompatibilitätsgruppen und die Aufklärung von Inkompatibilitätsbeziehungen zwischen Sorten, die eine wertvolle Information liefern, um geeignete Bestäubern bei der Gestaltung neuer Obstgärten zu wählen und geeignete Eltern in Zuchtprogrammen auszuwählen.
Selbstinkompatibilität ist eine Strategie der Blühenden Pflanzen, um Selbstbestäubung zu verhindern und Outcrossing1zu fördern. In Rosaceae wird dieser Mechanismus durch ein Gametophytic Self-Incompatibility System (GSI) bestimmt, das hauptsächlich durch den multiallelic locus S2gesteuert wird. Im Stil kodiert das RNase-Gen den S-s-Tylar-Determinanten, eine RNase3, während ein F-Box-Protein, das die S-Pollen-Determinantebestimmt, durch das SFB-Gen 4kodifiziert wird. S-s Die Selbstinkompatibilitätsinteraktion erfolgt durch die Hemmung des Pollenrohrwachstums entlang des Stils, der die Befruchtung der Ovule5,6verhindert.
In Der Aprikosen-Aprikosen-Aprikosen-Erneuerung hat in den letzten zwei Jahrzehnten weltweit eine Sortenerneuerung stattgefunden7,8. Diese Einführung einer wichtigen Anzahl neuer Sorten, aus verschiedenen öffentlichen und privaten Zuchtprogrammen, hat zu einer Zunahme von Aprikosensorten mit unbekannten Bestäubungsanforderungen geführt8.
Verschiedene Methoden wurden verwendet, um den Bestäubungsbedarf in Aprikosen zu bestimmen. Im Feld kann die Selbstverträglichkeit durch kontrollierte Bestäubungen in Käfigbäumen oder in entkalkten Blüten festgestellt werden und anschließend den Prozentsatz der Fruchtmenge9,10,11,12. Darüber hinaus wurden kontrollierte Bestäubungen im Labor durch semi-in vivo Kultur von Blumen und Analyse des Pollenrohrverhaltens unter Fluoreszenzmikroskopie8,13,14,15,16,17durchgeführt. In jüngster Zeit haben molekulare Techniken wie PCR-Analyse und Sequenzierung die Charakterisierung von Inkompatibilitätsbeziehungen ermöglicht, die auf der Untersuchung der RNase- und SFB-Gene 18,19basieren. In Aprikosen wurden 33 S-Allele gemeldet (S1 bis S20, S22 bis S30, S52, S53, Sv, Sx), einschließlich eines Alleels im Zusammenhang mit Selbstkompatibilität (Sc)12,18,20,21,22,23,24. Bisher wurden 26 Inkompatibilitätsgruppen in dieser Art nach dem S-Genotyp8, S9,,17,25,26,27festgestellt. Sorten mit den gleichen SS-Allelen sind miteinander kompatibel, während Sorten mit mindestens einem anderen S-Allel, die in verschiedenen inkompatiblen Gruppen zugeordnet sind, miteinander kompatibel sind. S
Um die Bestäubungsanforderungen von Aprikosensorten zu definieren, beschreiben wir eine Methode, die die Bestimmung der Selbstverträglichkeit durch S-Fluoreszenzmikroskopie mit der Identifizierung des S-Genotyps durch PCR-Analyse in Aprikosensorten kombiniert. Dieser Ansatz ermöglicht die Etablierung von Inkompatibilitätsgruppen und die Aufklärung von Inkompatibilitätsbeziehungen zwischen Sorten.
Traditionell waren die meisten kommerziellen Aprikosen-Sorten in Europa selbstkompatibel36. Nichtsdestotrotz hat die Verwendung von nordamerikanischen selbstinkompatiblen Sorten als Eltern in Zuchtprogrammen in den letzten Jahrzehnten zur Freisetzung einer wachsenden Anzahl neuer selbstinkompatibler Sorten mit unbekannten Bestäubungsanforderungen7,8,37geführt. So wird die Bestimmung von Selbst- und Inte…
The authors have nothing to disclose.
Diese Forschung wurde von Ministerio de Ciencia, Innovacién y Universidades-European Regional Development Fund, European Union (AGL2016-77267-R und AGL2015-74071-JIN) finanziert. Instituto Nacional de Investigacion y Tecnologa Agraria y Alimentaria (RFP2015-00015-00, RTA2017-00003-00); Gobierno de Aragén-Europäischer Sozialfonds, Europäische Union (Grupo Consolidado A12_17R), Fundacion Biodiversidad und Agroseguro S.A.
Agarose D1 Low EEO | Conda | 8010.22 | |
BIOTAQ DNA Polymerase kit | Bioline | BIO-21060 | |
Bright field microscope | Leica Microsystems | DM2500 | |
CEQ System Software | Beckman Coulter | ||
DNeasy Plant Mini Kit | QIAGEN | 69106 | |
dNTP Set, 4 x 25 µmol | Bioline | BIO-39025 | |
GenomeLab DNA Size Standard Kit – 400 | Beckman Coulter | 608098 | |
GenomeLab GeXP Genetic Analysis System | Beckman Coulter | ||
GenomeLab Separation Buffer | Beckman Coulter | 608012 | |
GenomeLab Separation Gel LPA-1 | Beckman Coulter | 391438 | |
HyperLadder 100bp | Bioline | BIO-33029 | |
HyperLadder 1kb | Bioline | BIO-33025 | |
Image Analysis System | Leica Microsystems | ||
Molecular Imager VersaDoc MP 4000 system | Bio-Rad | 170-8640 | |
NanoDrop One Spectrophotometer | Thermo Fisher Scientific | 13-400-518 | |
pH-Meter BASIC 20 | Crison | ||
Phusion High-Fidelity PCR Kit | Thermo Fisher Scientific | F553S | |
Power Pack P 25 T | Biometra | ||
Primer Forward | Isogen Life Science | ||
Primer Reverse | Isogen Life Science | ||
Quantity One Software | Bio-Rad | ||
Stereoscopic microscope | Leica Microsystems | MZ-16 | |
Sub-Cell GT | Bio-Rad | ||
SYBR Safe DNA Gel Stain | Thermo Fisher Scientific | S33102 | |
T100 Thermal Cycler | Bio-Rad | 1861096 | |
Taq DNA Polymerase | QIAGEN | 201203 | |
Vertical Stand Autoclave | JP Selecta |