Este método é útil para quantificar a dinâmica precoce da adesão celular e disseminação de células dependentes de ancoragem para a fibronectina. Além disso, este ensaio pode ser usado para investigar os efeitos da homeostase redox alterada na propagação da pilha e/ou nas vias de sinalização intracelular adesão-relacionadas da pilha.
A adesão e disseminação de células para a matriz extracelular (ECM) são processos celulares essenciais durante o desenvolvimento organizador e para a homeostase de tecidos adultos. Curiosamente, o estresse oxidativo pode alterar esses processos, contribuindo assim para a fisiopatologia de doenças como o câncer metastático. Conseqüentemente, compreender o mecanismo (s) de como as pilhas anexam e espalham no ECM durante as perturbações no status redox pode fornecer a introspecção em Estados normais e da doença. É descrito abaixo um protocolo passo-sábio que utilize um ensaio immunofluorescence-baseado para quantificar especificamente a adesão e a propagação da pilha de pilhas imortalizado do fibroblasto no fibronectina (FN) in vitro. Brevemente, as células dependentes de ancoragem são mantidas em suspensão e expostas ao inibidor da quinase ATM Ku55933 para induzir o estresse oxidativo. As pilhas são chapeadas então na superfície FN-revestida e permitidas anexar por períodos de tempo predeterminados. As células que permanecem ligadas são fixas e rotuladas com marcadores de anticorpos de adesão à base de fluorescência (por exemplo, paxillin) e espalhamento (por exemplo, F-Actina). A aquisição e a análise dos dados são executadas usando o equipamento de laboratório geralmente disponível, incluindo um microscópio da epifluorescência e software livremente disponível de Fiji. Este procedimento é altamente versátil e pode ser modificado para uma variedade de linhas celulares, proteínas de ECM, ou nervos inibidores a fim examinar uma escala larga de perguntas biológicas.
Aderências de matriz celular (ou seja, aderências focais) são grandes e dinâmicos complexos proteicos multimoleculares que mediam a adesão e disseminação celular. Estes processos são críticos para o desenvolvimento do tecido, a manutenção, e a função physiological. As aderências focais são compostas de receptores ligados à membrana, como as integrinas, bem como as proteínas de andaimes que ligam a actina citoesquelética à matriz extracelular (ECM)1. Esses complexos são capazes de responder a pistas fisioquímicas presentes no ambiente extracelular através da ativação de várias vias de transdução de sinalização. Como tal, as aderências focais servem como centros de sinalização para propagar pistas mecânicas extracelulares em vários processos celulares, incluindo migraçãodirecionada, regulaçãodo ciclo celular, diferenciação e sobrevida1,2. Um grupo de moléculas de sinalização que regulam e interagem com aderências focais inclui membros da família Rho de pequenos GTPases. As GTPases Rho são proteínas-chave que regulam a migração celular e a dinâmica de aderência através de sua ativação espaciotemporal específica3. Não surpreendentemente, a desregulação da função da proteína Rho tem sido implicada em um número de patologias humanas, tais como metástases, angiogênese, e outros. De particular interesse, o status redox celular desempenha um papel predominante na modulação da migração celular e adesão. Alterações na homeostase redox, como aumentos de espécies reativas de oxigênio (ROS), têm sido demonstradas para regular a atividade protéica de Rho, bem como adesão, em um número de tipos de células e doenças humanas4,5,6 ,7,8. Por exemplo, indivíduos que sofrem da desordem neurológica ataxia-Telangiectasia (A-T), que é causada por uma mutação no reparo de danos de DNA serina/treonina quinase A-T-Mutated (ATM), têm um risco aumentado de câncer metastático9, a 10. A perda da atividade da quinase ATM nesses pacientes e linhagens celulares, seja por meio da mutação genética ou da inibição química, resulta em altos níveis de estresse oxidativo devido à disfunção da via de fosfato pentose7,11, doze anos. Além disso, os estudos recentes do laboratório destacaram um papel patofisiológico para ROS em A-T alterando a dinâmica do cytoesquelético (isto é. adesão e espalhar) como um resultado direto de ativar GTPases da família de Rho in vitro5. Em última análise, essas alterações na dinâmica citoesquelética causadas pela ativação da família Rho podem levar ao aumento do risco de câncer metastático observado em pacientes com A-T5,13. Portanto, compreender a interação entre as interações célula-matriz durante o estresse oxidativo pode fornecer insights sobre a regulação da adesão e disseminação. Estes estudos podem igualmente ajustar o estágio para umas investigações mais adicionais em um papel possível para GTPases da família de Rho nestes processos de sinalização.
Descrito aqui é um protocolo para estudar a dinâmica celular precoce do conjunto de aderência e disseminação durante o estresse oxidativo causado pela inibição da atividade da quinase ATM. Este ensaio baseia-se no mecanismo bem caracterizado de adesão de células dependentes de ancoragem à fibronectina de proteína ECM (FN). Quando as células mantidas em suspensão são chapeadas na FN, vários Rho GTPases coordenam o controledo remodelamentocitoesquelético de actina14,15. Alterações morfológicas são observadas à medida que as células mudam de volta e circulares na aparência para achatado e expandido. Concomitante com estas observações é o desenvolvimento de aderências numerosas da matriz com o ECM. Essas alterações são atribuídas à ativação bifásica de Rhoa com Rac1 durante a primeira hora em que as células aderem e se espalham 15,16.
Uma variedade de métodos tem sido utilizada para examinar a morfologia da adesão e dinâmica, bem como a propagação celular. No entanto, esses métodos dependem de sistemas sofisticados de fluorescência de reflexão interna (TIRF) ou de microscopia confocal de longo prazo e de imagem viva. Assim, os usuários devem ter acesso a equipamentos e softwares especializados. Além disso, o tempo de set-up exigido por esses sistemas de bioimagem torna a captura de eventos de adesão precoce desafiador, especialmente quando o teste de múltiplos inibidores ou condições de tratamento simultaneamente.
Os métodos detalhados, aqui, fornecem uma maneira direta, econômica, contudo quantitativa de avaliar os parâmetros que governam o conjunto da adesão e que espalham in vitro. O protocolo é realizado usando equipamentos laboratoriais comumente disponíveis, como um microscópio de epifluorescência e câmera CCD. Este ensaio envolve a aplicação de células dependentes de ancoragem a uma superfície revestida com FN após um período de estresse oxidativo causado pela inibição química da atividade da quinase ATM, que tem sido demonstrada anteriormente5. Após o chapeamento, as células são permitidas para anexar e aderir para comprimentos especificados de tempo. As células não anexadas são lavadas, enquanto as células anexadas são fixas e marcadas com anticorpos à base de fluorescência para marcadores de aderência (por exemplo, paxillin) e espalhamento (por exemplo, F-Actina)2,5. Essas proteínas são então visualizadas e gravadas usando um microscópio de epifluorescência. A análise de dados subseqüente é executada usando o software livremente disponível de Fiji. Além disso, este método pode ser adaptado para examinar a dinâmica de adesão uma ampla gama de condições, incluindo diferentes proteínas de ECM, tratamento com vários oxidantes/condições de cultura celular ou uma variedade de linhas celulares dependentes de ancoragem para abordar uma ampla gama de questões biológicas.
O protocolo descrito aqui é uma maneira versátil e econômica de tela ràpida uma série de tipos ancoragem-dependentes da pilha para o citoesqueleto dinâmico que remodela durante espalhar da pilha. Em particular, este método examina quantitativamente a fibra de estresse e a formação de adesão focal durante o estresse oxidativo quando as células aderem à FN (Figura 1a). Além disso, estes fenótipos celulares podem sugerir um papel regulamentar para membros da família de Rho de GTP…
The authors have nothing to disclose.
Os autores agradecem aos Drs. Scott R. Hutton e Meghan S. Blackledge pela revisão crítica do manuscrito. Este trabalho foi financiado pela High Point University ‘ s Research and patrocinado Programs (MCS) e o programa de biotecnologia da North Carolina State University (MCS).
0.05% Trypsin-EDTA (1x) | Gibco by Life Technologies | 25300-054 | cell dissociation |
10 cm2 dishes | Cell Treat | 229620 | sterile, tissue culture treated |
15 mL conical tubes | Fisher Scientific | 05-539-5 | sterile |
1X Phosphate Buffered Saline | Corning Cellgro | 21-031-CV | PBS, sterile, free of Mg2+ and Ca2+ |
24-well cell culture treated plates | Fisher Scientific | 07-200-740 | sterile, tissue culture treated |
4°C refrigerator | Fisher Scientific | ||
Mouse IgG anti-paxillin primary antibody (clone 165) | BD Transduction Laboratories | 610620 | marker of focal adhesions |
Aspirator | Argos | EV310 | |
Biosafety cabinet | Nuair | NU-477-400 | Class II, Type A, series 5 |
Delipidated Bovine Serum Albumin (Fatty Acid Free) Powder | Fisher Scientific | BP9704-100 | dlBSA |
Dimethyl Sulfoxide | Fisher Scientific | BP231-100 | organic solvent to dissolve Ku55933 |
Dulbecco's Modified Eagle Media, High Glucose | Fisher Scientific | 11965092 | REF52 base cell culture medium |
Fetal bovine serum | Fisher Scientific | 16000044 | certified, cell culture medium supplement |
Fiji | National Institutes of Health | http://fiji.sc/ | image analysis program |
Filter syringe | Fisher Scientific | 6900-2502 | 0.2 µM, sterile |
Glass coverslips (12-Cir-1.5) | Fisher Scientific | 12-545-81 | autoclave in foil to sterilize |
Goat anti-mouse IgG secondary antibody Alexa Fluor 488 | Invitrogen | A11001 | fluorescent secondary antibody, light sensitive |
Goat Serum | Gibco by Life Technologies | 16210-064 | component of blocking solution for immunofluorescence |
Hemocytometer | Fisher Scientific | 22-600-107 | for cell counting |
Human Plasma Fibronectin | Gibco by Life Technologies | 33016-015 | FN |
IX73 Fluorescence Inverted Microscope | Olympus | microscope to visualize fluorescence, cell morphology, counting and dissociation | |
Ku55933 | Sigma-Aldrich | SML1109-25MG | ATM kinase inhibitor, inducer of reactive oxygen species |
L-glutamine | Fisher Scientific | 25-030-081 | cell culture medium supplement |
Monochrome CMOS 16 bit camera | Optimos | ||
Paraformaldehyde | Sigma-Aldrich | P6148-500G | PFA, fixative for immunofluorescence |
Penicillin-streptomycin | Fisher Scientific | 15-140-122 | P/S, antibiotic solution for culture medium |
Alexa Fluor 594 phalloidin (F-actin probe) | Invitrogen | A12381 | marker of F-actin, light sensitive |
ProLong Gold Anti-fade reagent with DAPI | Invitrogen | P36941 | cover slip mounting media including nuclear dye DAPI, light sensitive |
REF52 cells | Graham, D.M. et. al. Journal of Cell Biology 2018 | ||
Stir plate with heat control | Corning Incorporated | PC-420D | |
Syringe | BD Biosciences | 309653 | 60 mL syringe |
Tissue culture incubator | Nuair | ||
Triton X-100 | Fisher Scientific | BP151-500 | detergent used to permeabilize cell membranes |
Trypan Blue Solution | Fisher Scientific | 15-250-061 | for cell counting |
Trypsin Neutralizing Solution (1x) | Gibco by Life Technologies | R-002-100 | TNS, neutralizes trypsin instead of fetal bovine serum |
tube rotator | Fisher Scientific | 11-676-341 | |
water bath | Fisher Scientific | FSGPD02 |