Gen-Editing-Technologien haben es Forschern ermöglicht, Zebrafischmutanten zu generieren, um die Genfunktion relativ einfach zu untersuchen. Hier bieten wir einen Leitfaden zur parallelen Embryo-Genotypisierung und Quantifizierung von In-situ-Hybridisierungssignalen in Zebrafischen. Dieser unvoreingenommene Ansatz bietet eine höhere Genauigkeit bei phäotypischen Analysen auf der Grundlage der In-situ-Hybridisierung.
Die In-situ-Hybridisierung (ISH) ist eine wichtige Technik, die es Forschern ermöglicht, die mRNA-Verteilung vor Ort zu untersuchen und ist seit Jahrzehnten eine kritische Technik in der Entwicklungsbiologie. Traditionell stützten sich die meisten Genexpressionsstudien auf die visuelle Auswertung des ISH-Signals, eine Methode, die anfällig für Verzerrungen ist, insbesondere in Fällen, in denen Probenidentitäten von vornherein bekannt sind. Wir haben bereits über eine Methode berichtet, um diese Verzerrung zu umgehen und eine genauere Quantifizierung der ISH-Signale bereitzustellen. Hier stellen wir eine einfache Anleitung zur Anwendung dieser Methode vor, um die Expressionsniveaus von Genen von Interesse an ISH-gefärbten Embryonen zu quantifizieren und diese mit ihren entsprechenden Genotypen zu korrelieren. Die Methode ist besonders nützlich, um räumlich eingeschränkte Genexpressionssignale in Proben gemischter Genotypen zu quantifizieren und bietet eine unvoreingenommene und genaue Alternative zu den traditionellen visuellen Scoring-Methoden.
Die Einführung von Genom-Editing-Technologien (ZFN, TALENs und in jüngerer Zeit CRISPR/Cas9) hat zu einem massiven Anstieg der Anzahl von Laboratorien auf der ganzen Welt geführt, die diese Systeme nutzen, um die Funktion bestimmter Gene in vivo zu untersuchen. Insbesondere Zebrafische sind genetisch manipuliert und viele Mutanten wurden in den letzten1,2erzeugt. Für Entwicklungsbiologen ist die In-situ-Hybridisierung (ISH) eine der häufigsten Methoden zur Bewertung der phäotypischen Folgen von Genmutationen in der embryonalen Entwicklung. In Ermangelung offensichtlicher morphologischer Defekte, die homozygote Mutanten von ihrem wilden Typ oder heterozygoten Geschwistern trennen, ist es wichtig, verschiedene Genotypen korrekt identifizieren zu können.
Die klassische ISH stützt sich auf qualitative Analysen von Signalintensitäten, um Rückschlüsse auf regulatorische Wechselwirkungen zwischen dem Gen von Interesse und ausgewählten Markergenen zu ziehen. Obwohl diese Analysen nützlich sind, leiden sie unter technischen Schwankungen und können durch die Erwartungen der Forscher verzerrt sein. So wurde eine Methode entwickelt, um die Genexpression nach der Abbildung von ISH-gefärbten Embryonen zu quantifizieren, ohne vorher den entsprechenden Genotyp zu kennen. Es folgte eine effiziente DNA-Extraktion und Genotypisierung, die es uns ermöglichte, den Genotyp quantitativ mit der Genexpression3zu korrelieren. Während die Genotypisierung von Embryonen nach ISH vor4,5verwendet wurde, wurde die bildbasierte Quantifizierung von ISH-Mustern außer einigen Studien nicht weit verbreitet6,7. Die beliebtesten Alternativen basieren auf visueller Bewertung oder Zählung von ISH-befleckten Zellen8,9,10, beide anfällig für schlechte Reproduzierbarkeit und Forscher-Bias. Diese Methode ist besonders nützlich, um Veränderungen in Genen mit expressionischen Mustern zu untersuchen, die räumlich eingeschränkt sind, wie runx1 oder gata2b, beide ausgedrückt in einer begrenzten Teilmenge von Aortenbodenzellen, die als hämogenes Endothel11,12bezeichnet werden.
Hier wollen wir einen praktischen Leitfaden für die Umsetzung der Quantifizierung durch Bildanalyse mit Fidschi13, sowie das DNA-Extraktions- und Genotypisierungsprotokoll zur Verfügung stellen. Dies soll unsere zuvor veröffentlichte Methode3visuell veranschaulichen. Unsere Methode ermöglicht eine genaue Darstellung der von der ISH nachgewiesenen Variation der Genexpression und eine unvoreingenommene Zuordnung der Genexpressionsniveaus zu bestimmten Genotypen.
Bei der Verwendung dieser Methode zur Quantifizierung der Genexpression sollten einige Faktoren berücksichtigt werden. Die bildgebenden Bedingungen müssen während des gesamten Experiments beibehalten werden (z. B. Beleuchtung, Belichtungszeiten und Embryopositionierung), um die Variabilität zwischen den Messungen zu reduzieren. Ein kritischer Punkt ist es, eine Überfärbung der Proben zu vermeiden, da Unterschiede in der Färbung zwischen den Proben maskiert werden können. So konnte beispielsweise die Abnahme der VegfA-Expression in Abwesenheit von Eto2 in Xenopus laevis Embryonen30 nur durch sorgfältige Überwachung der Färbung über einen Zeitraum von 24 Stunden nachgewiesen werden. Daher ist es eine gute Praxis, empirisch angemessene Färbeniveaus für jedes Gen zu bestimmen, das seine Expression am besten darstellt, ohne die Sättigung zu erreichen. Überfärbung erhöht auch künstlich die Hintergrundpixelintensität in den konvertierten 8-Bit-Graustufenbildern und verzerrt die Quantifizierungsergebnisse. In extremen Fällen kann der Hintergrundpegel in embryonalen Geweben höher sein als das ISH-Signal im ausgewählten ROI, und diese Proben sollten von der Analyse ausgeschlossen werden. Ein ähnliches Phänomen wurde beobachtet, als wir die Eignung des ungefärbten Dotters auf Hintergrundkorrektur testeten (Abbildung 4). Nach Inversion und Konvertierung in 8-Bit werden die dunkleren Pixel im Dotterbereich heller als das ISH-Signal im Embryo und machen die Hintergrundkorrigiertwerte negativ. Vermeiden Sie daher die Verwendung des Dotters zur Hintergrundkorrektur. Die Messung des Hintergrundsignals in pigmentierten Bereichen im Embryo (z.B. die Augen oder der dorsale Teil des Stammes ab 26/28 hpf) verzerrt gleichermaßen die Quantitationsergebnisse und sollte ebenfalls vermieden werden. Es gibt Protokolle zum Bleichen von Zebrafischembryonen, entweder vor oder nach der ISH18 und Bleichembryonen, die älter als 24 hpf sind, bevor eine Bildgebung empfohlen wird.
Da diese Methode auf der Messung der Pixelintensität in einem definierten Bereich vor einer Hintergrundpixelintensität in einem äquivalenten nicht-gefärbten Bereich beruht, ist es nicht geeignet, allgegenwärtige oder nahezu allgegenwärtig exprimierte Gene wie sie sind zu quantifizieren. Stattdessen eignet es sich gut zur Messung der Expression von Genen mit einer räumlich begrenzten Verteilung, in der ein Bereich zur Messung der Hintergrundpixelintensität leicht identifiziert werden kann. Unsere zusätzliche Analyse legt nun nahe, dass die Verwendung einer kleineren Fläche (3-4x kleiner) für die Hintergrundkorrektur ähnliche Ergebnisse liefert wie die Verwendung eines gleichwertigen Bereichs wie der ROI. Dies erweitert die Anwendbarkeit der Methode auf Gene, die in größeren räumlichen Bereichen exprimiert werden (und daher größere ROIs für Intensitätsmessungen erfordern), solange man deutlich ungefärbte Bereiche des Embryos zur Hintergrundkorrektur verwenden kann.
Schließlich schlagen wir vor, dass die Genotypisierung parallel oder nach der Bildquantifizierung durchgeführt wird, um die Voreingenommenheit der Experimentatoren zu minimieren. Wenn ein zweiter Experimentator aufgefordert wird, die Quantifizierung auf anonymisierten Proben zu wiederholen und mit dem ersten Satz von Messungen zu vergleichen, wird auch dazu beitragen, die Voreingenommenheit der Experimentatoren zu verringern. Wenn die zu quantifizierenden Bilder aus einem Vergleich zwischen Behandlungen stammen, die keine Genotypisierung erfordern (z. B. Wildtyp vs. chemischer Inhibitor oder Wildtyp vs. MO-Knockdown), sollte der Experimentator, der die Messungen durchführt, für die Identität des Beispiel.
The authors have nothing to disclose.
Wir danken den Mitarbeitern von Biomedical Services in Oxford und Birmingham für die ausgezeichnete Zebrafischzucht. T.D. wurde von einem Wellcome Trust Chromosom and Developmental Biology PhD Scholarship (#WT102345/Z/13/Z) gefördert. R.M. und M.K. wurden von der British Heart Foundation (BHF IBSR Fellowship FS/13/50/30436) gefördert und sind dankbar für ihre großzügige Unterstützung. R.M. unterstützt das BHF Centre of Research Excellence (RE/13/1/30181), Oxford.
0.2 mL PCR tubes (8-strips with lids) | StarLab | A1402-3700 | 96-well plates are equally appropriate for sample handling but beware of cross contamination between samples |
3 mL Pasteur pipettes | Alpha Laboratories | LW4114 | |
Cavity slides | Brand | BR475535-50EA | |
Digital Camera (Qimaging Micropublisher 5.0) | Qimaging | ||
Eppendorf Microloader tips | Eppendorf | 10289651 | the tips are used to orient the embryos for imaging in glycerol |
Excel | Microsoft | ||
F3000 Fiber Optic Cold Light Source | Photonic | ||
Fiji | |||
Glycerol | Sigma | G5516-1L | |
Graphpad Prism 8.01 | GraphPad Software, Inc. | we prefer to use Graphpad, but other statistics software packages are also suitable (e.g. SigmaPlot or SPSS) | |
HotSHOT alkaline lysis buffer | 25 mM NaOH, 0.2 mM disodium EDTA, pH 12 | ||
HotSHOT neutralization buffer | Tris HCl 40 mM, pH 5 | ||
PBS (10X) pH 7.4 | Thermofisher | 70011044 | |
Stereomicroscope with illumination stand (Nikon SMZ800N) | Nikon | ||
Thermocycler | Thermofisher |