本文介绍了一种基于环境质谱的独特实时分析方法的样品制备方法。这种方法使我们能够对体内的生物分子进行实时分析,无需任何特殊的预处理。
质谱(MS)是分析化学中一种强有力的工具,因为它提供了非常准确的分子信息,如质量-电荷比(m/z),这些信息有助于推导分子量和结构。虽然它本质上是一种破坏性的分析方法,但环境电离技术的最新进展使我们能够获取数据,同时使组织在完整性方面处于相对完整的状态。探头电喷雾电化(PESI)是一种所谓的直接方法,因为它不需要对样品进行复杂而耗时的预处理。细针用作样品拾取器和电电化发射器。基于探针尖端非常尖锐和精细的特性,对样品的破坏是最小的,使我们能够从原地生物获取实时分子信息。在这里,我们介绍了PESI-MS技术的三个应用,这些应用对生物医学的研究和发展是有用的。一是固体组织的应用,是该技术在医学诊断中的基本应用。由于此技术只需要 10 毫克的样品,它可能在常规临床设置中非常有用。第二个应用是体外医学诊断,其中测量人血清。测量流体样品的能力在各种生物实验中也很有价值,因为无法为常规分析技术提供足够的样品量。第三个应用倾向于在活体动物中直接应用探针,我们可以在特定的器官中获得代谢物或药物的实时动力学。在每个应用中,我们可以推断MS检测到的分子,或者使用人工智能来获得医学诊断。
质谱(MS)是一种还原论的技术实现;它将分析对象减少到一个可以基于分子物种或级联解释的单位。因此,它是分析化学的一种代表性方法。它由四个过程组成:电电化、分析、检测和光谱采集。由于分子电电化是质谱学的第一个过程,它通常限制分析物的加工形式。大多数电电化过程都需要破坏有机样品的结构、形态和实时生物过程。例如,电喷雾电电化 (ESI) MS 要求样品处于液态,以便实现高效的电电1。因此,样品必须经过复杂的生化制备,从而改变分子的组成。另外,虽然基质辅助激光解吸电离(MALDI)MS可以重建薄切片组织2、3的分子图,但其电离效率太低,无法检测样品中的所有分子,在分析脂肪酸方面尤为差。考虑到这些限制,探针电喷电电(PESI)4可用于观察生物系统在原位的实时变化,而不会破坏结构完整性5,而被观测的生物体在技术上处于生存状态。在这种情况下,使用非常精细的针头,同时用作样品拾取器和辐射体。这意味着可以绕过复杂的样品预处理序列,以获得反映原位生命系统分子成分的质量光谱。
还有其他几种电电化方法与PESI-MS相媲美。一个是快速蒸发电电化质谱(REIMS)6。这种技术在手术中效果很好,因为它用电刀组装,并收集切口过程中产生的电羽。虽然REIMS对手术非常有用,但它本质上是一种破坏性方法,需要组织电消融。因此,在准备样品或实验室分析中,它对于细胞和组织的详细分析没有用处。此外,由于它收集了大量含有组织碎片的羽状物,因此每次使用后都需要对设备进行长时间的维护,从而将这种机器的使用限制在特殊的外科手术中。一种类似的方法,称为激光脱吸电团质谱法(LDI-MS)7,是另一种非侵入性的技术,对表面分析有用。由于该技术擅长扫描标本表面,因此实现了像MALDI成像质谱仪8、9等综合二维分析。然而,由于LDI-MS仅适用于表面分析,PESI-MS有利于分析样品,例如组织内的样品。另一种技术,MasSpec Pen10,据报道,在诊断甲状腺癌时达到高特异性和灵敏度,但探针的直径是毫米的,它是特定于表面分析,这意味着它不能检测癌症或深度局部病变的小结节。此外,由于该方法使用嵌入在探针笔中的微毛细管流管,因此必须考虑交叉污染,类似于 LDI-MS。其他技术已经应用于临床设置,如流动探针和电电化形式拭11,但它们并不普遍。
PESI 是 ESI 的极端小型化,其中纳米电喷的毛细管收敛在尖曲半径为几百 nm 的固体针上。电离发生在针尖的极限区,形成泰勒锥体,样品一直保留,直到尖端上所有液体的电离完成12。如果分析物停留在金属针尖上,则在金属针和分析物之间的界面处连续产生过量电荷。因此,分子的连续电电化取决于其表面活性。此属性使针尖成为一种色谱图,根据分析物的表面活动分离分析物。更从技术上讲,表面活性较强的分子会进入泰勒锥体表面,并且比表面活性较弱的分子更早电离,这些分子会粘附在针的表面直到电离过程结束。因此,所有被针拾取的分子完全电电化是13。此外,由于这种技术不涉及在样品中添加多余的溶剂,几百个飞升足以得到足够强的质谱,以便进一步分析14。这些特性有利于分析完整的生物样品。然而,PESI-MS 的一个主要缺点是电电位不连续,因为针沿垂直轴的往复运动类似于锯床。仅当孔孔的高度与水平轴对齐时,探头尖端达到最高点时才会发生电一合。当针拾取样品时,电电停止,因此电电化的稳定性不等于传统ESI。因此,PESI-MS 不是蛋白质组学的理想方法。
迄今为止,PESI-MS主要应用于生物系统的分析,涵盖从基础研究到临床环境的广泛领域。例如,对手术期间准备的人体组织的直接分析能够揭示出肾细胞癌15和咽癌16中三乙甘油的积累。这种方法还可以测量液体样品,如血液,以专注于脂质轮廓。例如,在兔子的饮食变化过程中,一些分子被划定;据介绍,其中一些分子在实验初期就减少了,表明该系统对临床诊断具有很高的灵敏度和实用性。此外,直接应用于活的动物允许在禁食5一晚后检测肝脏的生化变化。Zaitsu等人18日再次对实验5进行了重新实验,以几乎相同的方式分析了肝脏的代谢特征,结果增强了我们原始方法的稳定性和可重复性。此外,我们利用这项技术19区分小鼠的癌症组织与周围非癌性肝脏。因此,这是一种多功能质谱技术,在各种环境中(包括体内和体外)都很有用。从另一个角度来看,PESI 模块可以通过调整安装附件来适应各种质谱仪。在这篇短文中,我们介绍了应用的基本和示例(图1),包括带有活体动物的应用程序5。
根据每个国家的条例和法律,需要修订本议定书的某些部分,以满足每个机构的标准。应用于活生物体是最有趣和最具挑战性的,因为它可以在原位活动物的组织中或器官中提供生化或代谢变化。虽然这项申请在2013年得到了山梨大学动物护理机构委员会的批准,但由于最近动物实验法规的变更,现在需要再进行一轮批准。因此,对实验方案进行一些修改是可取的。关于实验中获得的质谱,考虑到每次测量之间的质谱波动,没有核苷酸测序界共有的光谱信息共享系统。操作者处理针头时必须小心,以避免针棒事故,尤其是在从针架上取下针头时。分离针头的特殊装置对于此用途非常有用。由于 PESI 模块的隔间是一个密封、封闭的腔室,因此,如果根据说明操作质谱仪,则不会发生电羽泄漏。
虽然PESI是ESI的质谱4的衍生物,但它最有利于监测实时代谢组学,以及分析生化反应,而无需执行任何复杂或耗时的预处理5,14,15,17。它是一种简单和瞬时的质谱技术,可应用于生物体的集成状态。由于它不需要复杂的样品预处理级联,因此评估整个标本的分子组成的可能性要大?…
The authors have nothing to disclose.
我们感谢Ayumi Iizuka操作PESI-MS和KazukoSawa-nobori为她的秘书协助。我们感谢埃丹斯集团(www.edanzediting.com/ac)的布朗文·加德纳博士编辑了这份手稿的草稿。
5-Fluoro-2'-deoxyuridine (5-FdU) | Sigma-Aldrich | F8791-25MG | 25mg |
disposable biposy punch (Trepan) | kai Europa GmbH | BP-30F | bore size 3mm |
ethanol | nacalai tesque | 14710-25 | extra pure reagent |
LabSolutions | Shimadzu | ver. 5.96, Data analyzer | |
micropestle | United Scientific Supplies | S13091 | |
microtube | Treff | 982855 | 0.5 mL clear |
PESI-MS (Direct Probe Ionization-MS) | Shimadzu | DPiMS-2020 | Mass spectrometer equipped with PESI |
PPGT solition | Shimadzu | ND | Attached to DPiMS-2020 |