Um protocolo para a síntese de HNbWO6, hnbmoo6, htawo6 nanosheet ácido sólido modificado pt/cnts é apresentado.
Apresentamos aqui um método para a síntese de HNbWO 6, hnbmoo6, htawo6 Nanosheet de ácido sólido modificado pt/cnts. Variando o peso de vários nanosheets ácidos sólidos, uma série de pt/xHMNO6/cnts com diferentes composições de ácido sólido (x = 5, 20 WT%; M = NB, ta; N = mo, W) foram preparados por pré-tratamento de nanotubos de carbono, troca protônica, esfoliação ácida sólida, agregação e finalmente impregnação de partículas pt. O pt/xHMNO6/cnts é caracterizado por difração de raios X, microscopia eletrônica de varredura, microscopia eletrônica de transmissão e dessorção programada de3temperaturas do NH. O estudo revelou que hnbwo6 nanofolhas foram anexados em cnts, com algumas bordas das nanofolhas que estão sendo dobradas na forma. A resistência ácida dos catalisadores pt suportados aumenta na seguinte ordem: pt/CNTs < pt/5HNbWO6/cnts < pt/20HNbMoO6/cnts ≪ pt/20hnbwo6/cnts < pt/20htawo6/cnts. Além disso, foi investigada a hidroconversão catalítica do composto modelo derivado de lignina: éter difenilo utilizando o catalisador pt/20HNbWO6 sintetizado.
Muitos processos industriais para a fabricação de produtos químicos envolvem o uso de ácido inorgânico aquoso. Um exemplo típico é o processo H2so4 convencional para a hidratação do ciclohexano para produzir ciclohexanol. O processo envolve um sistema bifásico, sendo o ciclohexano na fase orgânica e o produto ciclohexanol na fase aquosa ácida, dificultando assim o processo de separação por simples destilação. Aparte da dificuldade na separação e na recuperação, o ácido inorgânico é igualmente altamente tóxico e corrosivo ao equipamento. Por vezes, o uso de ácido inorgânico gera subprodutos que baixarão o rendimento do produto e devem ser evitados. Por exemplo, a desidratação de 2-ciclohexeno-1-ol para produzir 1,3-ciclohexadieno usando H2so4 levará a subprodutos de polimerização1. Assim, muitos processos industriais mudam para o uso de catalisadores de ácidos sólidos. Os vários ácidos contínuos tolerantes à água são usados para resolver o problema acima e para maximizar os rendimentos do produto, tais como o uso de HZSM-5 e de Amberlyst-15. O uso do zeólita hzsm-5 da elevado-sílica foi mostrado para substituir H2assim4 na produção de ciclohexanol do benzeno2. Uma vez que a zeólita está presente na fase aquosa neutra, o produto vai para a fase orgânica exclusivamente, simplificando assim o processo de separação. Entretanto, devido à formação aduto ácido-base de Lewis de moléculas de água aos locais ácidos de Lewis, os materiais zeólitico ainda demonstraram uma mais baixa seletividade devido à presença de locais inativos3. Entre todos estes ácidos sólidos, NB2o5 é um dos melhores candidatos que contêm tanto Lewis e Brønsted sites de ácido. A acidez do NB2o5∙ NH2o equivale a uma solução de 70% H2assim4 , devido à presença dos prótons lábil. A acidez de Brønsted, que é comparável aos materiais Protonic do zeólita, é muito elevada. Esta acidez vai se transformar em Lewis acidez após a eliminação da água. Na presença de água, NB2o5 forma o tetraédrico NBO4-H2o Adducts, que pode diminuir na acidez de Lewis. Entretanto, os locais ácidos de Lewis são ainda eficazes desde que o NBO4 tetraédricos ainda tem cargas positivas eficazes4. Tal fenômeno foi demonstrado com sucesso na conversão da glicose em 5-(hydroxymethyl) furfural (HMF) e no allylation do benzaldeído com lata do tetraallyl na água5. Os catalisadores tolerantes à água são, portanto, cruciais na conversão de biomassa em aplicações de energias renováveis, especialmente quando as conversões são realizadas em solventes ambientais benignos, como água.
Entre os muitos catalisadores de ácidos sólidos benignos ambientais, os nanomateriais de carbono funcionalizados usando grafeno, nanotubos de carbono, nanofibras de carbono, materiais de carbono mesoporosos têm desempenhado um papel importante na valorização da biomassa devido à porosidade sintonável, área de superfície específica extremamente elevada, e hidrofobicidade excelente6,7. Os derivados sulfonados são materiais catalíticos protónicos particularmente estáveis e altamente ativos. Podem ser preparados por carbonização incompleta de compostos aromáticos sulfonados8 ou por sulfonação de açúcares incompletamente carbonizados9. Eles provaram ser catalisadores muito eficientes (por exemplo, para a esterificação de ácidos graxos mais elevados) com atividade comparável ao uso do líquido H2so4. Os grafenos e CNTs são materiais de carbono com uma grande área de superfície, excelentes propriedades mecânicas, boa resistência ácida, distribuições de tamanho de poros uniformes, bem como resistência ao depósito de coque. O grafeno sulfonado foi encontrado para catalisar eficientemente a hidrólise do acetato de etilo10 e os catalisadores bifuncionais do grafeno foram encontrados para facilitar a conversão do um-potenciômetro do ácido levullinic ao γ-valerolactone11. Os metais bifuncionais apoiados em cnts também são catalisadores muito eficientes para aplicação na conversão de biomassa12,13, como a oxidação aeróbia altamente seletiva de HMF para 2,5-diformylfuran sobre o vo2-Pani/CNT catalisador14.
Aproveitando as propriedades únicas de NB2o5 de ácido sólido, funcionalizados cnts e metal bifuncional apoiado em cnts, nós relatamos o protocolo para a síntese de uma série de NB (ta)-baseado nanosheet ácido sólido modificado pt/cnts com um alto área de superfície por um método de agregação de nanofolhas. Além disso, Nós demonstramos que pt/20hnbwo6/cnts, em conseqüência do efeito sinérgica de partículas bem dispersas do pinta e de locais ácidos fortes derivados de nanosheets de hnbwo6 , exibem a melhor atividade e seletividade em converter compostos de modelo derivado de lignina em combustíveis por hidrodesoxigenação.
O pré-tratamento de CNTs com ácido nítrico aumenta significativamente a área de superfície específica (SBet). Os CNTs crus têm uma área de superfície específica de 103 m2/g quando após o tratamento, a área de superfície foi aumentada a 134 m2/g. Conseqüentemente, tal pré-tratamento para criar defeitos na superfície de CNT terá um efeito positivo na área de superfície específica nos catalisadores após a modificação ácida contínua e a impregnação da partícula da …
The authors have nothing to disclose.
O trabalho descrito neste artigo foi integralmente apoiado por uma subvenção do Conselho de auxílios à pesquisa da região administrativa especial de Hong Kong, China (UGC/FDS25/E09/17). Nós também reconhecemos com gratidão a National natural Science Foundation da China (21373038 e 21403026) para fornecer instrumentos analíticos para a caracterização do catalisador e reator de leito fixo para a avaliação de desempenho do catalisador. Dr. Hongxu QI gostaria de agradecer para o Assistantship da pesquisa concedido pelo Conselho de concessões da pesquisa de Hong Kong (UGC/FDS25/E09/17).
Carbon nanotubes (multi-walled) | Sigma Aldrich | 724769 | |
Nitric acid (65%) | Sigma Aldrich | V000191 | |
sulphuric acid (98%) | MERCK | 100748 | |
Lithium carbonate (>99%) | Aladdin | L196236 | |
Niobium pentaoxide (99.95%) | Aladdin | N108413 | |
Tungsten trioxide (99.8%) | Aladdin | T103857 | |
Molybdenum trioxide (99.5%) | Aladdin | M104355 | |
Tantalum oxide (99.5%) | Aladdin | T104746 | |
Chloroplatinic acid hexahydrate, ≥37.50% Pt basis | Sigma Aldrich | 206083 | |
tetra (n-butylammonium) hydroxide 30-hydrate | Aladdin | D117227 | |
Diphenyl ether, 98% | Aladdin | D110644 | |
2-Bromoacetophenone,98% | Aladdin | B103328 | |
Diethyl ether,99.5% | Sinopharm | 10009318 | |
n-Decane,98% | Aladdin | D105231 | |
n-Dodecane,99% | Aladdin | D119697 | |
Autoclave Reactor | CJF-0.05—0.1L (Dalian Tongda Equipment Technology Development Co., Ltd) | ||
Tube furnace | SK2-1-10/12 (Luoyang Huaxulier Electric Stove Co., Ltd) |