Este protocolo centra-se na identificação de proteínas que se ligam a fosfatos de inositol ou fosfoinositídeos. Ele usa a cromatografia de afinidade com fosfatos de inositol biotinylated ou fosfoinositídeos que são imobilizados via estreptavidina para agarose ou grânulos magnéticos. Fosfato de inositol ou proteínas de ligação Fosfoinositídeo são identificados por western blotting ou espectrometria de massa.
Fosfatos de inositol e fosfoinositídeos regulam vários processos celulares em eucariontes, incluindo expressão gênica, tráfico de vesículas, transdução de sinal, metabolismo e desenvolvimento. Estes metabolitos realizam esta atividade regulamentar ligando-se a proteínas, alterando assim a conformação proteica, a atividade catalítica e/ou as interações. O método descrito aqui utiliza cromatografia de afinidade acoplada à espectrometria de massas ou western blotting para identificar proteínas que interagem com fosfatos de inositol ou fosfoinositídeos. Fosfatos de inositol ou fosfoinositídeos são quimicamente marcados com biotina, que é então capturado via estreptavidina conjugados para agarose ou grânulos magnéticos. As proteínas são isoladas por sua afinidade de ligação ao metabolito, então eluída e identificada por espectrometria de massas ou western blotting. O método tem um fluxo de trabalho simples que é sensível, não-radioativo, Liposome-livre, e customizável, suportando a análise da interação da proteína e do metabolito com precisão. Esta abordagem pode ser usada em métodos de espectrometria de massas quantitativas rotuladas com rótulo livre ou em aminoácidos para identificar interações proteína-metabólito em amostras biológicas complexas ou usando proteínas purificadas. Este protocolo é otimizado para a análise de proteínas do Trypanosoma brucei, mas pode ser adaptado a parasitas relacionados com protozoários, leveduras ou células de mamíferos.
Fosfatos de inositol (IPS) e fosfoinositídeos (PIS) desempenham um papel central na biologia eucariote através da regulação de processos celulares como o controle da expressão gênica1,2,3, tráfico de vesículas 4, transdução de sinal5,6, metabolismo7,8,9e desenvolvimento8,10. A função reguladora destes metabolitos resulta da sua capacidade de interagir com proteínas e, assim, regular a função proteica. Após a ligação por proteínas, IPs e PIs podem alterar a conformação de proteínas11, atividade catalítica12, ou interações13 e, portanto, afetam a função celular. IPS e PIS são distribuídos em múltiplos compartimentos subcelulares, como o núcleo2,3,14,15, retículo endoplasmático16,17, plasma membrana1 e citosol18, ambas associadas com proteínas3,19 ou com RNAs20.
A clivagem do PI associado à membrana (4, 5) P2 pela fosfolipase C resulta na liberação de ins (1, 4, 5) P3, que podem ser fosforilados ou deposforilados por IP quinases e fosfatases, respectivamente. IPs são moléculas solúveis que podem se vincular a proteínas e exercer funções regulatórias. Por exemplo, ins (1, 4, 5) P3 no metazoano podem atuar como um segundo mensageiro ligando-se aos receptores IP3, o que induz alterações conformacionais do receptor e, assim, liberação de CA2 + de lojas intracelulares11. Ins (1, 3, 4, 5) P4 liga-se ao complexo histona deacetilase e regula o conjunto complexo proteico e a atividade13. Outros exemplos de função regulatória de IPS incluem o controle da organização decromatina21, transporte de RNA22,23, edição de RNA24e transcrição1,2,3 . Em contrapartida, os pis estão frequentemente associados ao recrutamento de proteínas para a membrana plasmática ou membranas Organela25. No entanto, uma propriedade emergente do PIS é a capacidade de associar-se a proteínas em um ambiente não membranoso3,15,19,26. Este é o caso do fator esteroidogênicas do receptor nuclear, que a função de controle transcricional é regulada pelo PI (3, 4, 5) P319, e pela polimerase poli-A que a atividade enzimática é regulada pelo PI nuclear (4, 5) P226. Um papel regulatório para IPS e PIS foi demonstrado em muitos organismos, incluindolevedura 22,27, células demamíferos 19,23, Drosophila10 e worms28. De significância é o papel desses metabólitos em tripanossomas, que divergiram precocemente da linhagem eucariótica. Estes metabolitos desempenham um papel essencial no controlo transcripcional de Trypanosoma brucei 1,3, desenvolvimento8, biogênese organela e tráfego proteico29,30 , 31 de dezembro , 32, e também estão envolvidos no controle do desenvolvimento e infecção nos patógenos T. cruzi33,34,35, Toxoplasma36 e Plasmodium 5. º , 37. portanto, compreender o papel dos IPS e PIS em tripanossomas pode ajudar a elucidar a nova função biológica para essas moléculas e identificar novos alvos de drogas.
A especificidade da ligação proteína e IP ou PI depende dos domínios de interação protéica e do estado de fosforilação do inositol13,38, embora as interações com a parte lipídica do PIS também ocorra19. A variedade de IPs e PIs e suas cinases modificadoras e fosfatases fornece um mecanismo celular flexível para controlar a função protéica que é influenciada pela disponibilidade e abundância do metabolito, o estado de fosforilação do inositol e proteínas afinidade da interação1,3,13,38. Embora alguns domínios proteicos sejam bem caracterizados39,40,41, por exemplo, domínio de homologia de homologia42 e SPX (SYG1/Pho81/XPR1) domínios43 ,44,45, algumas proteínas interagem com IPS ou PIS por mecanismos que permanecem desconhecidos. Por exemplo, a proteína 1 (RAP1) do repressor-ativador de T. brucei carece de domínios de vinculação de PI canônicos, mas interage com pi (3, 4, 5) P3 e controle de transcrição de genes envolvidos na variação antigênica3. A cromatografia de afinidade e a análise de espectrometria de massas de proteínas IP ou PI que interagem de trypanosome, levedura ou células de mamíferos identificaram várias proteínas sem domínios de ligação IP ou PI conhecidos8,46, 47. os dados sugerem domínios proteicos não caracterizados adicionais que se ligam a estes metabolitos. Assim, a identificação de proteínas que interagem com IPs ou PIs pode revelar novos mecanismos de interação proteína-metabólito e novas funções reguladoras celulares para essas pequenas moléculas.
O método descrito aqui emprega a cromatografia de afinidade acoplada à mancha ocidental ou à espectrometria maciça para identificar as proteínas que ligam ao IPs ou ao PIs. Utiliza IPs biotinilados ou PIs que estão ligados a streptavidina conjugados a grânulos de agarose ou, alternativamente, capturados através de grânulos magnéticos conjugados com streptavidina (Figura 1). O método fornece um fluxo de trabalho simples que é sensível, não radioativo, Liposome-livre e é adequado para detectar a ligação de proteínas de lisados celulares ou proteínas purificadas3 (Figura 2). O método pode ser usado em Label-Free8,46 ou acoplado a espectrometria de massas quantitativa com rótulo de aminoácido47 para identificar proteínas de ligação IP ou PI de amostras biológicas complexas. Assim, este método é uma alternativa aos poucos métodos disponíveis para estudar a interação de IPs ou PIs com proteínas celulares e ajudará na compreensão da função regulatória desses metabólitos em tripanossomas e talvez outros eucariontes.
A identificação de proteínas que se ligam a IPs ou PIs é fundamental para compreender a função celular desses metabólitos. A cromatografia de afinidade acoplada ao borrão ocidental ou à espectrometria maciça oferece uma oportunidade de identificar IP ou PI que interagem proteínas e daqui obtêm introspecções em sua função regulamentar. IPs ou PIs quimicamente marcados [por exemplo, ins (1, 4, 5) P3 quimicamente ligados à biotina] e reticulados a grânulos de agarose via estreptavidina ou capturados por gr…
The authors have nothing to disclose.
Este trabalho foi apoiado pelo Conselho de pesquisa de ciências naturais e engenharia do Canadá (NSERC, RGPIN-2019-04658); Suplemento de lançamento de descoberta NSERC para pesquisadores de carreira precoce (DGECR-2019-00081) e pela Universidade McGill.
Acetone | Sigma-Aldrich | 650501 | Ketone |
Acetonitrile | Sigma-Aldrich | 271004 | Solvent |
Ammonium bicarbonate | Sigma-Aldrich | A6141 | Inorganic salt |
Centrifuge Avanti J6-MI | Beckman Coulter | Avanti J6-MI | Centrifuge for large volumes (e.g., 1L) |
Centrifuge botles | Sigma-Aldrich | B1408 | Bottles for centrifugation of 1L of culture |
Control Beads | Echelon | P-B000-1ml | Affinity chromatography reagent – control |
D-(+)-Glucose | Sigma-Aldrich | G8270 | Sugar, Added in PBS to keep cells viable |
Dithiothreitol (DTT) | Bio-Rad | 1610610 | Reducing agent |
Dynabeads M-270 Streptavidin | ThermoFisher Scientific | 65305 | Streptavidin beads for binding to biotin ligands |
EDTA-free Protease Inhibitor Cocktail | Roche | 11836170001 | Protease inhibitors |
Electrophoresis running buffer | Bio-Rad | 1610732 | 25 mM Tris, 192 mM glycine, 0.1% SDS, pH 8.3 |
Falcon 15 mL Conical Centrifuge Tubes | Corning Life Sciences | 430052 | To centrifuge 10 mL cultures |
Formic acid | Sigma-Aldrich | 106526 | Acid |
Glycine | Sigma-Aldrich | G7126 | Amino acid |
HMI-9 cell culture medium | ThermoFisher Scientific | ME110145P1 | Cell culture medium for T. brucei bloodstream forms |
Imperial Protein Stain | ThermoFisher Scientific | 24615 | Coomassie staining for protein detection in SDS/PAGE |
Ins(1,4,5)P3 Beads | Echelon | Q-B0145-1ml | Affinity chromatography reagent |
Instant Nonfat Dry Milk | Thomas Scientific | C837M64 | Blocking reagent for Western blotting |
Iodoacetamide | Sigma-Aldrich | I6125 | Alkylating reagent for cysteine proteins or peptides |
Lab Rotator | Thomas Scientific | 1159Z92 | For binding assays |
LoBind Microcentrifuge Tubes | ThermoFisher Scientific | 13-698-793 | Low protein binding tubes for mass spectrometry |
Nonidet P-40 (Igepal CA-630) | Sigma-Aldrich | 21-3277 | Detergent |
PBS, pH 7.4 | ThermoFisher Scientific | 10010031 | Physiological buffer |
Peroxidase substrate for chemiluminescence | ThermoFisher Scientific | 32106 | Substrate for Western bloting detection of proteins |
PhosSTOP Phosphatase Inhibitor Cocktail Tablets | Roche | 4906845001 | Phosphatase inhibitors |
PI(3)P PIP Beads | Echelon | P-B003a-1ml | Affinity chromatography reagent |
PI(3,4)P2 PIP Beads | Echelon | P-B034a-1ml | Affinity chromatography reagent |
PI(3,4,5)P3 diC8 | Echelon | P-3908-1mg | Affinity chromatography reagent |
PI(3,4,5)P3 PIP Beads | Echelon | P-B345a-1ml | Affinity chromatography reagent |
PI(3,5)P2 PIP Beads | Echelon | P-B035a-1ml | Affinity chromatography reagent |
PI(4)P PIP Beads | Echelon | P-B004a-1ml | Affinity chromatography reagent |
PI(4,5)P2 diC8 | Echelon | P-4508-1mg | Affinity chromatography reagent |
PI(4,5)P2 PIP Beads | Echelon | P-B045a-1ml | Affinity chromatography reagent |
PI(5)P PIP Beads | Echelon | P-B005a-1ml | Affinity chromatography reagent |
Ponceau S solution | Sigma-Aldrich | P7170 | Protein staining (0.1% [w/v] in 5% acetic acid) |
Potassium hexacyanoferrate(III) | Sigma-Aldrich | 702587 | Potassium salt |
PtdIns PIP Beads | Echelon | P-B001-1ml | Affinity chromatography reagent |
PVDF Membrane | Bio-Rad | 1620177 | For Western blotting |
Refrigerated centrifuge | Eppendorf | 5910 R | Microcentrifuge for small volumes (e.g., 1.5 mL) |
Sodium dodecyl sulfate | Sigma-Aldrich | 862010 | Detergent |
Sodium thiosulfate | Sigma-Aldrich | 72049 | Chemical |
SpeedVac Vacuum Concentrators | ThermoFisher Scientific | SPD120-115 | Sample concentration (e.g., for mass spectrometry) |
T175 flasks for cell culture | ThermoFisher Scientific | 159910 | To grow 50 mL T. brucei culture |
Trypsin, Mass Spectrometry Grade | Promega | V5280 | Trypsin for protein digestion |
Urea | Sigma-Aldrich | U5128 | Denaturing reagent |
Vortex | Fisher Scientific | 02-215-418 | For mixing reactions |
Western blotting transfer buffer | Bio-Rad | 1610734 | 25 mM Tris, 192 mM glycine, pH 8.3 with 20% methanol |
Whatman 3 mm paper | Sigma-Aldrich | WHA3030861 | Paper for Wester transfer |
2-mercaptoethanol (14.2 M) | Bio-Rad | 1610710 | Reducing agent |
2x Laemmli Sample Buffer | Bio-Rad | 161-0737 | Protein loading buffer |
4–20% Mini-PROTEAN TGX Precast Protein Gels | Bio-Rad | 4561094 | Gel for protein electrophoresis |
4x Laemmli Sample Buffer | Bio-Rad | 161-0747 | Protein loading buffer |