Neste método, nós quantificamos a afinidade obrigatória de proteínas de ligação do RNA (rbps) aos locais de ligação cognato e non-cognato usando um simples, vivo, ensaio do repórter em pilhas bacterianas. O ensaio é baseado na repressão de um gene repórter.
No passo de iniciação da tradução da proteína, o Ribossome liga-se à região de iniciação do mRNA. A iniciação da tradução pode ser obstruída pela ligação de uma proteína obrigatória do RNA (RBP) à região de iniciação do mRNA, que interfere com o emperramento ribossoma. No método apresentado, utilizamos este fenômeno de bloqueio para quantificar a afinidade vinculativa de RBPs aos seus locais de ligação cognato e não cognato. Para fazer isso, inserimos um site de vinculação de teste na região de iniciação de um mRNA de repórter e induzem a expressão do teste RBP. No caso da Associação RBP-RNA, observou-se uma repressão sigmoidal da expressão repórter em função da concentração de RBP. No caso de não afinidade ou de afinidade muito baixa entre o local de ligação e a RBP, não foi observada nenhuma repressão significativa. O método é realizado em células bacterianas ao vivo, e não requer maquinaria dispendiosa ou sofisticada. É útil para quantificar e comparar entre as afinidades de ligação de RBPs diferentes que são funcionais nas bactérias a um jogo de locais de ligação projetados. Este método pode ser inadequado para sites de ligação com alta complexidade estrutural. Isto é devido à possibilidade da repressão da iniciação ribosomal pela estrutura complexa do mRNA na ausência de RBP, que conduziria à expressão de gene mais baixa do repórter basal, e assim à repressão menos-Observable do repórter em cima da ligação de RBP.
A regulação pós-transcricional de proteína de ligação de RNA (RBP), especificamente a caracterização da interação entre RBPs e RNA, tem sido extensivamente estudada nas últimas décadas. Existem vários exemplos de baixo-regulação translacional em bactérias originárias da inibição do rbps, ou diretamente competindo com, ligação Ribossome1,2,3. No campo da biologia sintética, as interações RBP-RNA estão surgindo como uma ferramenta significativa para o desenho de circuitos genéticos baseados em transcrição4,5. Portanto, há um aumento na demanda para caracterização dessas interações RBP-RNA em um contexto celular.
Os métodos mais comuns para o estudo das interações proteína-RNA são o ensaio eletroforético de deslocamento de mobilidade (EMSA)6, que é limitado a configurações in vitro, e vários ensaios pull-down7, incluindo o método de clipe8,9 . Quando tais métodos permiterem a descoberta de locais de ligação do RNA de de novo, sofrem dos inconvenientes tais como protocolos labor-intensivos e de reações de seqüenciamento profundas caras e podem exigir um anticorpo específico para a tração-para baixo de RBP. Devido à natureza suscetível do RNA ao seu ambiente, muitos fatores podem afetar as interações RBP-RNA, enfatizando a importância de interrogar a ligação RBP-RNA no contexto celular. Por exemplo, nós e outros temos demonstrado diferenças significativas entre as estruturas de RNA in vivo e in vitro10,11.
Baseado na aproximação de um estudo precedente12, Nós demonstramos recentemente10 que ao coloc locais obrigatórios pre-projetados para o capsídeo rbps dos bacteriófagos GA13, MS214, PP715, e qβ16 no região de iniciação de tradução de um repórter mRNA, a expressão do repórter é fortemente reprimido. Nós apresentamos um método relativamente simples e quantitativo, baseado neste fenômeno da repressão, para medir a afinidade entre RBPs e seu local de ligação RNA correspondentes in vivo.
O método descrito neste artigo facilita a medida in vivo quantitativa da afinidade obrigatória da RBP-RNA em pilhas de E. coli . O protocolo é relativamente fácil e pode ser conduzido sem o uso de maquinaria sofisticada, e a análise de dados é direta. Além disso, os resultados são produzidos imediatamente, sem o tempo de espera relativamente longo associado com os resultados de sequenciamento da próxima geração (NGS).
Uma limitação a este método é que trabalha somente e…
The authors have nothing to disclose.
Este projeto recebeu financiamento do programa I-CORE do Comitê de planejamento e orçamento e da Fundação de ciência de Israel (Grant no. 152/11), Marie Curie reintegration Grant no. PCIG11-GA-2012-321675, e do programa Horizonte 2020 de investigação e inovação da União Europeia, a Convenção de subvenção n. º 664918-MRG-gramática.
Ampicillin sodium salt | SIGMA | A9518 | |
Magnesium sulfate (MgSO4) | ALFA AESAR | 33337 | |
48 plates | Axygen | P-5ML-48-C-S | |
8- lane plates | Axygen | RESMW8I | |
96-well plates | Axygen | P-DW-20-C | |
96-well plates for plate reader | Perkin Elmer | 6005029 | |
ApaLI | NEB | R0507 | |
Binding site sequences | Gen9 Inc. and Twist Bioscience | see Table 1 | |
E. coli TOP10 cells | Invitrogen | C404006 | |
Eagl-HF | NEB | R3505 | |
glycerol | BIO LAB | 071205 | |
incubator | TECAN | liconic incubator | |
Kanamycin solfate | SIGMA | K4000 | |
KpnI- HF | NEB | R0142 | |
ligase | NEB | B0202S | |
liquid-handling robotic system | TECAN | EVO 100, MCA 96-channel | |
Matlab analysis software | Mathworks | ||
multi- pipette 8 lanes | Axygen | BR703710 | |
N-butanoyl-L-homoserine lactone (C4-HSL) | cayman | K40982552 019 | |
PBS buffer | Biological Industries | 020235A | |
platereader | TECAN | Infinite F200 PRO | |
Q5 HotStart Polymerase | NEB | M0493 | |
RBP seqeunces | Addgene | 27121 & 40650 | see Table 2 |
SODIUM CHLORIDE (NaCL) | BIO LAB | 190305 | |
SV Gel and PCR Clean-Up System | Promega | A9281 | |
Tryptone | BD | 211705 |