Qui descriviamo l’immunoprecipitazioni Rev in presenza di replicazione HIV-1 per la spettrometria di massa. I metodi descritti possono essere utilizzati per l’identificazione dei fattori nucleolari coinvolti nel ciclo infettivo dell’HIV-1 e sono applicabili ad altri modelli di malattia per la caratterizzazione di percorsi poco studiati.
Il ciclo infettivo HIV-1 richiede interazioni virali delle proteine con i fattori dell’ospite per facilitare la replicazione, l’imballaggio e il rilascio virali. Il ciclo infettivo richiede ulteriormente la formazione di complessi proteici virali/ospiti con RNA HIV-1 per regolare lo splicing e consentire il trasporto nucleocitoplasmatico. La proteina HIV-1 Rev realizza l’esportazione nucleare di mRNA HIV-1 attraverso la multimerizzazione con obiettivi cis-recidivi intronici – l’elemento di risposta Rev (RRE). Un segnale di localizzazione nucleolare (NoLS) esiste all’interno del COOH-terminus del motivo ricco di arginina Rev (ARM), permettendo l’accumulo di complessi Rev/RRE nel nucleolo. I fattori nucleolari sono ipotizzati per sostenere il ciclo infettivo dell’HIV-1 attraverso varie altre funzioni oltre a mediare l’esportazione nucleare indipendente dall’mRNA e lo splicing. Descriviamo un metodo di immunoprecipitazioni del Rev di tipo selvaggio (WT) rispetto alle mutazioni nucleolare Rev (mutazioni Rev nucleolari e Rev-NoLS) in presenza di replicazione HIV-1 per la spettrometria di massa. Fattori nucleolari implicati nel trasporto nucleocitoplasmatico (nucleophosmin B23 e nucleolin C23), così come i fattori di giunzione cellulare, perdono l’interazione con Rev in presenza di mutazioni Rev-NoLS. Vari altri fattori nucleolari, come la casella SnoRNA C/D 58, sono identificati per perdere l’interazione con le mutazioni Rev, ma la loro funzione nel ciclo di replicazione dell’HIV-1 rimane sconosciuta. I risultati qui presentati dimostrano l’uso di questo approccio per l’identificazione di fattori nucleolari virali/ospiti che mantengono il ciclo infettivo dell’HIV-1. I concetti utilizzati in questo approccio sono applicabili ad altri modelli di malattie e virali che richiedono la caratterizzazione di percorsi poco studiati.
Il nucleolo è postulato come il terreno di interazione di vari fattori cellulari e virali necessari per la replicazione virale. Il nucleolo è una struttura complessa suddivisa in tre diversi comparti: il compartimento fibrillare, il compartimento fibrillare denso e il compartimento granulare. La proteina HIV-1 Rev si localizza specificamente all’interno di compartimenti granulari; Tuttavia, il motivo di questo modello di localizzazione è sconosciuto. In presenza di mutazioni a punto singolo all’interno della sequenza NoLS (mutazioni Rev 4, 5 e 6), Rev mantiene un modello nucleolare e in precedenza ha dimostrato di salvare la replica HIV-1HXB2, tuttavia, con una minore efficienza rispetto al WT Rev1 . Tutte le mutazioni monopunto non sono in grado di sostenere il ciclo infettivo dell’HIV-1NL4-3. In presenza di più mutazioni monopunto all’interno della sequenza NoLS (mutazioni Rev-NoLS 2 e 9), Rev è stato osservato per disperdersi in tutto il nucleo e il citoplasma e non è stato in grado di salvare la replica HIV-1HXB2 1. L’obiettivo di questo studio proteomica è quello di decifrare i fattori nucleolari e cellulari non nucleolari coinvolti nella via infettiva HIV-1 mediata da Rev. Le condizioni di immunoprecipitazioni del rev sono ottimizzate attraverso l’interazione con il nucleolare B23 fosforproteina, che in precedenza ha dimostrato di perdere l’interazione con Rev in presenza di mutazioni nucleolare.
I fattori cellulari Rev sono stati ampiamente studiati in passato; tuttavia, questo è stato fatto in assenza di patogenesi virale. Una proteina, in particolare, che è caratterizzata in questo studio attraverso l’interazione del rev durante la replicazione HIV-1 è la fosforproteina nucleolare B23 – chiamata anche nucleofosmina (NPM), numatrina o NO38 negli anfibi2,3, 4. B23 è espresso come tre isoformi (NPM1, NPM2 e NPM3) – tutti membri della famiglia chaperone nucleare nucleophosmin/nucleoplasmin5,6. Lo chaperone molecolare NPM1 funziona nell’assemblaggio corretto dei nucleosomi, nella formazione di complessi di acido proteico/nucleico coinvolti nelle strutture di ordine superiore della cromatina7,8,e nella prevenzione dell’aggregazione e misfolding delle proteine bersaglio attraverso un dominio di base N-terminale (residui 1-120)9. La funzionalità NPM1 si estende alla genesi del ribosoma attraverso il trasporto di particelle preribosomiche tra il nucleo e il citoplasma10,11, l’elaborazione dell’RNA preribosomico nella sequenza distanziale trascritto internamente 12,13, e arrestando l’aggregazione nucleolare delle proteine durante l’assemblaggio ribosomiale14,15. NPM1 è implicato nell’inibizione dell’apoptosi16 e nella stabilizzazione dei soppressori tumorali ARF17,18 e p5319, rivelando il suo duplice ruolo come fattore oncogenico e soppressore tumorale. NPM1 partecipa alle attività cellulari di stabilità del genoma, replicazione centrosome e trascrizione. NPM1 si trova nei nucleoli durante l’interfase del ciclo cellulare, lungo la periferia cromosomica durante la mitosi, e nei corpi prenucleolari (PNB) alla conclusione della mitosi. NPM2 e NPM3 non sono ben studiati come NPM1, che subisce livelli di espressione alterati durante la malignità20.
NPM1 è documentato nell’shuttling nucleocitoplasmatica di varie proteine nucleari/nucleolare attraverso un NES interno e NLS9,21 ed è stato precedentemente segnalato per guidare l’importazione nucleare di HIV-1 Tat e Rev proteine. In presenza di proteine di fusione B23-binding-dominio-z-galactosidasi, Tat si smarrisce all’interno del citoplasma e perde l’attività di trasattivazione; questo dimostra una forte affinità di Tat per B232. Un altro studio ha stabilito un complesso stabile Rev/B23 in assenza di mRNA contenenti RRE. In presenza di mRNA RRE, Rev dissocia da B23 e si lega preferibilmente all’HIV RRE, portando allo spostamento di B2322. Non è noto dove, a livello subnucleare, si verificano la trasattivazione tat e il processo di scambio rev di B23 per l’HIV mRNA. Entrambe le proteine sono postulate per entrare contemporaneamente nel nucleolo attraverso l’interazione B23. Si prevede il coinvolgimento di altre proteine cellulari ospiti nella via nucleolare dell’HIV. I metodi descritti in questa indagine proteomica aiuteranno a chiarire l’interazione del nucleolo con i fattori cellulari ospiti coinvolti durante la patogenesi HIV-1.
L’indagine proteomica è stata avviata attraverso l’espressione delle mutazioni a punto singolo del Rev NoLS (M4, M5 e M6) e delle sostituzioni multiple di arginine (M2 e M9) per la produzione HIV-1hXB2. In questo modello, una linea cellulare HeLa che esprime stabilmente HIV-1HXB2 (HLfB) carente di Rev viene trasinata da mutazioni nucleolari WT Rev e Rev contenenti un tag flag alla fine del 3′. La presenza di WT Rev permetterà la replicazione virale nella cultura HLfB, rispetto alle mutazioni Rev-NoLS che non salvano la carenza di Rev (M2 e M9), o consentirà la replicazione virale, ma non in modo efficiente come WT Rev (M4, M5 e M6)1. Il lisato cellulare viene raccolto 48 h più tardi dopo la proliferazione virale in presenza di espressione Rev e sottoposto a immunoprecipitazioni con un buffer di lissi è ottimizzato per l’interazione Rev/B23. Viene descritta l’ottimizzazione del buffer di lisi utilizzando concentrazioni di sale variabili e i metodi di eluizione delle proteine per HIV-1 Rev vengono confrontati e analizzati in gel SDS-PAGE macchiati d’argento o macchiati di Coomassie. Il primo approccio proteomico prevede l’analisi diretta di un campione eluito da Espressi WT Rev, M2, M6, e M9 da spettrometria di massa tandem. Un secondo approccio con il quale gli eluati di WT Rev, M4, M5 e M6 sono stati sottoposti a un processo di estrazione gel viene confrontato con il primo approccio. Viene analizzata l’affinità peptide alle mutazioni Rev-NoLS rispetto a WT Rev e viene visualizzata la probabilità di identificazione delle proteine. Questi approcci rivelano potenziali fattori (nucleolari e nonnucleolari) che partecipano al trasporto e giunzione di mRNA HIV-1 con Rev durante la replicazione dell’HIV-1. Nel complesso, le condizioni di lisi cellulare, IP, e di eluizione descritte sono applicabili alle proteine virali di interesse per la comprensione dei fattori cellulari ospiti che attivano e regolano le vie infettive. Questo è applicabile anche allo studio dei fattori dell’ospite cellulare necessari per la persistenza di vari modelli di malattia. In questo modello proteomico, HIV-1 Rev IP è ottimizzato per l’interazione B23 per chiarire i fattori nucleolari coinvolti nell’attività di shuttling nucleocitoplasmatica e nell’attacco mRNA HIV-1. Inoltre, possono essere sviluppate linee cellulari che esprimano stabilmente modelli di malattie infettive che sono carenti per le proteine chiave di interesse, simile alla linea cellulare HLfB, per studiare le vie infettive di interesse.
Sono state valutate le analisi spettrometriche di massa che confrontano le mutazioni Rev-NoLS e WT Rev in presenza di HIV-1 per comprendere i fattori nucleolari coinvolti nel ciclo di replicazione virale. Ciò identificherebbe i componenti nucleolari necessari per l’infettività virale. Nucleolar B23 ha un’alta affinità con Rev-NoLS e funziona nella localizzazione nucleolare del Rev3 e del trasporto nucleocitoplasmatico di mRNA HIV legati al Rev222. L’affinità di B23 con …
The authors have nothing to disclose.
Gli autori riconoscono Dr. Barbara K. Felber e Dr. George N. Pavlakis per la cultura aderente HLfB fornito dal National Institutes of Health (NIH) AIDS Research and Reference Reagent Program, Division of AIDS, National Institute of Allergy and Infectious Infectious Malattie (NIAID), NIH. Gli autori riconoscono anche le fonti finanziarie fornite dal NIH, Grants AI042552 e AI029329.
Acetic acid | Fisher Chemical | A38S-212 | |
Acetonitrile | Fisher Chemical | A955-500 | |
Acrylamide:Bisacrylamide | BioRad | 1610158 | |
Ammonium bicarbonate | Fisher Chemical | A643-500 | |
Ammonium persulfate | Sigma-Aldrich | 7727-54-0 | |
ANTI-Flag M2 affinity gel | Sigma-Aldrich | A2220 | |
anti-Flag M2 mouse monoclonal IgG | Sigma-Aldrich | F3165 | |
BioMax MS film | Carestream | 8294985 | |
Bio-Rad Protein Assay Dye Reagent Concentrate, 450 mL | Bio-Rad | 5000006 | |
B23 mouse monoclonal IgG | Santa Cruz Biotechnologies | sc-47725 | |
Bromophenol blue | Sigma-Aldrich | B0126 | |
Carnation non-fat powdered milk | Nestle | N/A | |
Cell scraper | ThermoFisher Scientific | 179693PK | |
C18IonKey nanoTile column | Waters | 186003763 | |
Corning 100-mm TC-treated culture dishes | Fisher Scientific | 08-772-22 | |
Dithiothreitol | Thermo Scientific | J1539714 | |
1 x DPBS | Corning | 21-030-CVRS | |
ECL Estern blotting substrate | Pierce | 32106 | |
Ethanol, 200 proof | Fisher Chemical | A409-4 | |
FBS | Gibco | 16000044 | |
Formic Acid | Fisher Chemical | A117-50 | |
GelCode blue stain reagent | ThermoFisher | 24590 | |
Glycerol | Fisher Chemical | 56-81-5 | |
goat-anti-mouse IgG-HRP | Santa Cruz Biotechnologies | sc-2005 | |
Iodoacetamide | ACROS Organics | 122270050 | |
KimWipe delicate task wiper | Kimberly Clark Professional | 34120 | |
L-glutamine | Gibco | 25030081 | |
Methanol | Fisher Chemical | 67-56-1 | |
NanoAcuity UPLC | Waters | N/A | |
Pierce Silver Stain Kit | Thermo Scientific | 24600df | |
15-mL Polypropylene conical tube | Falcon | 352097 | |
Prestained Protein Ladder, 10 to 180 kDa | Thermo Scientific | 26616 | |
Protease inhibitor cocktail | Roche | 4693132001 | |
Purified BSA | New England Biolabs | B9001 | |
PVDF Western blotting membrane | Roche | 3010040001 | |
Sodium Pyruvate | Gibco | 11360070 | |
10 x TBS | Fisher Bioreagents | BP2471500 | |
TEMED | BioRad | 1610880edu | |
Triton X-100 detergent solution | BioRad | 1610407 | |
Trizaic source | Waters | N/A | |
trypsin-EDTA | Corning | 25-051-CIS | |
Tween 20 | BioRad | 1706531 | |
Synapt G2 mass spectrometer | Waters | N/A | |
Whatman filter paper | Tisch Scientific | 10427813 |