Summary

Disección de la Retina Pupal de Drosophila para inmunohistoquímica, Western análisis y aislamiento de ARN

Published: March 15, 2019
doi:

Summary

Este artículo presenta un método quirúrgico para disección Drosophila pupas retinas junto con protocolos para el procesamiento del tejido para la extracción de RNA, inmunohistoquímica y análisis occidental.

Abstract

La retina pupal de Drosophila proporciona un sistema modelo excelente para el estudio de procesos morfogenéticos durante el desarrollo. En este trabajo, presentamos un protocolo confiable para la disección de la delicada retina pupal de Drosophila . Nuestro abordaje utiliza herramientas fácilmente disponibles de microdisección para abrir pupas y precisamente extraer complejos músculo-ojo-cerebro. Estos pueden fijarse, objeto de immunohistochemistry y retinas entonces montados en portaobjetos de microscopio y reflejados si el objetivo es detectar estructuras celulares o subcelulares. Alternativamente, retinas interpretaciones pueden ser aislados del tejido cerebral, lisis en buffers de apropiada y utilizadas para que proteína gel electroforesis o mRNA extracción (evaluar la expresión de la proteína o gen, respectivamente). Paciencia y práctica significativa pueden ser necesario para dominar el protocolo de microdisección descrito, pero una vez dominado, el protocolo permite aislamiento relativamente rápida de retinas principalmente intactas.

Introduction

La retina de Drosophila se compone de aproximadamente 750 ommatidia rodeada de pigmento las células dispuestas en panal enrejado1,2,3,4. Cada ommatidium contiene ocho neuronas fotorreceptoras, cuatro células secretoras de la lente de cono y dos células de pigmento primarias. Que rodean cada ommatidium son células productoras de pigmento de enrejado y los grupos de cerdas sensoriales. Debido a su naturaleza poste-mitotic y arreglo hexagonal estereotipada, la retina pupal de Drosophila proporciona un sistema modelo excelente para el estudio de los procesos morfogenéticos incluyendo células adherencia5,6, 7,8,9,10 y apoptosis11,12,13,14,15.

Varios protocolos publicados utilizan presión de aire a extraer complejos músculo-ojo-cerebro de Drosophila pupa16,17,18. El protocolo descrito aquí en su lugar utiliza instrumentos de microdisección para cuidadosamente y precisamente aislar complejos músculo-ojo-cerebro con el objetivo de obtener tejido retiniano intacto. Esto es crucial si retinas son para ser utilizados para morfológicos, proteína o expresión génica análisis ya que puede dañar a retinas estrés celular o incluso la muerte, que podría modificar la expresión del fenotipo o gene del celular. Además, después de la práctica, pueden aislarse complejos músculo-ojo-cerebro de 6 a 10 en 10 a 15 minutos, facilitando el objetivo de minimizar la variabilidad en la edad y etapa de desarrollo de tejido ocular disecada.

La fijación, inmunotinción y montaje de todo Protocolo se describe a continuación es conveniente para la preparación de ojos de Drosophila para microscopía fluorescente. Retinas pueden ser incubadas con anticuerpos contra proteínas de interés. Por ejemplo, anticuerpos contra componentes de ensambladura de los adherens puede ser utilizado para visualizar las circunferencias apicales de las células para poder características como tipo de la célula, forma y arreglo de los19. Antes de la fijación, ojos en su lugar pueden ser hendidos del cerebro con el fin de extracción de proteínas para análisis occidental o ARN para su uso en qRT-PCR o secuenciación del RNA.

Protocol

1. preparación de tejido Configurar Drosophila cruza (como se describe anteriormente20) o cepas específicas de Drosophila para obtener pupas del genotipo deseado de la cultura. Para asegurar que un gran número de pupas emerge coincidentemente, establecer estas culturas mosca por duplicado en medios de alimentos ricos en nutrientes o alimentos medios suplidos generosamente con pasta de levadura. Mantener cultivos de Drosophila a 25 ° C. Para cruces…

Representative Results

El ojo de pupa es un tejido de fácil acceso que sirve como un excelente modelo para investigar procesos de desarrollo morfogénesis de la drive. Aquí, nosotros hemos diseccionado retinas y utiliza inmunofluorescencia para detectar las ensambladuras de los adherens apical (Figura 3A, C) o la caspasa Dcp-1 (figura 3D) que se activa durante la apoptosis (figura 3)25. Estos enfoques permiten ob…

Discussion

El método de disección de ojo pupal de Drosophila aquí descrito permite el aislamiento de complejos de músculo-ojo-cerebro de 6 a 10 en 10 a 15 min. Sin embargo, paciencia y práctica son esenciales para dominar la técnica de disección y mejorar la calidad y velocidad de disecciones. Este tiempo breve disección asegura que cada ojo es aproximadamente la misma etapa de desarrollo, reducir la variabilidad en la expresión del fenotipo o gen de retinas en un conjunto de datos. Mientras protocolos alternativo…

Disclosures

The authors have nothing to disclose.

Acknowledgements

Agradecemos a Zack tambor y nuestros revisores para comentarios sobre el manuscrito. Este trabajo fue apoyado por R15GM114729.

Materials

Adobe Photoshop Adobe Image processing software
Bamboo splints, 6"  Ted Pella Inc 116
Beta mercaptoethanol Sigma-Aldrich M3148
Beta-glycerol phosphate Sigma-Aldrich 50020
Black dissecting dish Glass petri dish filled to rim with SYLG170 or SYLG184 (colored black with finely ground charcoal powder). Leave at room temperature for 24-48 h to polymerize.
Blade holder Fine Science Tools 10053
Bovine serum albumin Sigma-Aldrich A7906
cOmplete, EDTA-free protease inhibitor cocktail tablets Roche 4693132001
Confocal microscope (Zeiss LSM 501) Carl Zeiss or similar microscope
Diethyl Pyrocarbonate (DEPC) Sigma-Aldrich 40718
Double-sided tape 3M 665
Drosophila food media, nutrient-rich  7.5% sucrose, 15% glucose, 2.5% agar, 20% brewers yeast, 5% peptone, 0.125% MgSO4.7H2O, 0.125% CaCl2.2H20
Drosophila food media, standard Bloomington Drosophila Stock center cornmeal recipe.  (https://bdsc.indiana.edu/information/recipes/bloomfood.html)
Ethylenediaminetetraacetic acid Sigma-Aldrich E6758
Fixative solution 4% formadehyde in PBS, pH 7.4.
Fluorescence microscope (TCS SP5 DM microscope) Leica Microsystems or similar microscope
Forceps  Fine Science Tools 91150-20 Forceps should be sharpened frequently.
Formaldehyde Thermo Scientific 28908
Glass 9-well dishes  Corning 7220-85 Also known as 9-well dishes 
Glass coverslips (22 x 22 mm) Fisher Scientific 12-542-B
Glass microscope slides (25 x 75 x 1 mm) Fisher Scientific 12-550-413
Glass petri dish Corning 3160-100BO
Glycerol Sigma-Aldrich G5516
Image Studio software version 5.2.5 LI-COR Biosciences Image processing software for quantitation of Western blots.
Laemmli sample buffer Bio-Rad 161-0737 2X concentrated protein sample buffer, supplement with beta mercaptoethanol as per manufacturer's instructions.
Lane marker reducing sample buffer  ThermoFisher Scientific 39000 5X concentrated protein sample buffer.
Microcentrigure tubes  Axygen MCT-175-C
Microdissection scissors  Fine Science Tools 15000-03
Microwell trays (72 x 10 µL wells) Nunc 438733
Mounting media 0.5% N-propylgallate and 80% glycerol in PBS
N-propylgallate Sigma-Aldrich P3130
Nuclease-free PBS (PBS in 0.1% DEPC, pH 7.4) Add appropriate volume of DEPC to PBS, mix well and incubate overnight at room temperature with constant stirring. Autoclave for at least 20 minutes. Store at 4°C
PBS (phosphate buffered saline pH 7.4) Sigma-Aldrich P5368 Prepare according to manufacturer's instructions
PBS+pi (PBS plus protease and phoshatase inhibitors) 10mM NaF, 1mM beta-glycerol phosphate and 1mM Na3VO4 in PBS, pH 7.4.  
PBT 0.15% TritonX and 0.5% bovine serum albumin in PBS, pH 7.4
Pin holder Fine Science Tools 26016-12
Primary antibody: goat anti-GAPDH Imgenex IMG-3073 For Western blotting. Used at 1:3000
Primary antibody: rabbit anti-cleaved Dcp-1 Cell signaling 9578S For immunofluorescence. Used at 1:100
Primary antibody: rat anti-DEcad Developmental Studies Hybridoma Bank DCAD2 For immunofluorescence. Used at 1:20
Primary antibody: rat anti-DEcad DOI: 10.1006/dbio.1994.1287 DCAD1  Gift from Tadashi Uemura. Used at 1:100.
RNA extration kit: Relia Prep RNA tissue Miniprep kit  Promega Z6110
Rnase decontamination reagent (RNase Away) Molecular BioProducts 7002
Scalpel blades Fine Science Tools 10050 Break off small piece of scapel blade and secure in blade holder.
Secondary antibody: 488-conjugated  donkey anti-rat IgG (H+L) Jackson ImmunoResearch 712-545-153 For immunofluorescence. Used at 1:200
Secondary antibody: cy3-conjugated goat anti-rabbit IgG (H+L) Jackson ImmunoResearch 111-165-144 For immunofluorescence. Used at 1:100
Secondary antibody: HRP-conjugated goat anti-rat IgG (H+L) Cell Signaling Technology 7077 For Western blotting. Used at 1:3000
Secondary antibody: HRP-conjugated rabbit anti-goat IgG (H+L) Jackson ImmunoResearch 305-035-003 For Western blotting. Used at 1:3000
Sodium Chloride Sigma-Aldrich S3014
Sodium Fluoride Sigma-Aldrich 215309
Sodium vanadate Sigma-Aldrich 50860
Spectrophotometer (NanoDrop) ThermoFisher Scientific 2000c 
Stereo dissecting microscope (M60 or M80) Leica Microsystems or similar microscope
Sylgard (black) Dow Corning SYLG170
Sylgard (transparent) Dow Corning SYLG184 Color black with finely ground charcol powder
Tissue: Kimwipes KIMTECH 34120
TritonX Sigma-Aldrich T8787
Trizma hydrochloride pH7.5 Sigma-Aldrich T5941
Tungsten needle, fine Fine Science Tools 10130-10 Insert into pin holder
Tungsten needle, sturdy Fine Science Tools 10130-20 Insert into pin holder
WTLB (western tissue lysis buffer) 150mM NaCl, 1.5% Triton X-100, 1mM EDTA, 20% glycerol, 10mM NaF, 1mM beta-glycerol phosphate and 1mM Na3VO4 in 50mM Tris-HCl (pH 7.5). Supplement with one cOmplete protease cocktail table per 10 mL solution.
Yeast paste (local supermarket) Approximately 2 tablespoons Fleischmann's ActiveDry Yeast (or similar) dissolved in ~20 mL distilled H2O

References

  1. Cagan, R. L., Ready, D. F. The emergence of order in the Drosophila pupal retina. Developmental biology. 136 (2), 346-362 (1989).
  2. Wolff, T., Ready, D. . The development of Drosophila melanogaster. , 1277-1325 (1993).
  3. Carthew, R. W. Pattern formation in the Drosophila eye. Current opinion in genetics & development. 17 (4), 309-313 (2007).
  4. Kumar, J. P. Building an ommatidium one cell at a time. Developmental Dynamics. 241 (1), 136-149 (2012).
  5. Hayashi, T., Carthew, R. W. Surface mechanics mediate pattern formation in the developing retina. Nature. 431, 647 (2004).
  6. Bao, S., Cagan, R. Preferential Adhesion Mediated by Hibris and Roughest Regulates Morphogenesis and Patterning in the Drosophila Eye. Developmental Cell. 8 (6), 925-935 (2016).
  7. Cordero, J. B., Larson, D. E., Craig, C. R., Hays, R., Cagan, R. Dynamic Decapentaplegic signaling regulates patterning and adhesion in the Drosophila pupal retina. Development (Cambridge, England). 134 (10), 1861-1871 (2007).
  8. Larson, D. E., Liberman, Z., Cagan, R. L. Cellular behavior in the developing Drosophila pupal retina. Mechanisms of development. 125 (3-4), 223-232 (2008).
  9. Martín-Bermudo, M. D., Bardet, P. L., Bellaïche, Y., Malartre, M. The vav oncogene antagonises EGFR signalling and regulates adherens junction dynamics during Drosophila eye development. Development. 142 (8), 1492-1501 (2015).
  10. Chan, E. H., Chavadimane Shivakumar, P., Clément, R., Laugier, E., Lenne, P. F. Patterned cortical tension mediated by N-cadherin controls cell geometric order in the Drosophila eye. eLife. 6, e22796 (2017).
  11. Lin, H. V., Rogulja, A., Cadigan, K. M. Wingless eliminates ommatidia from the edge of the developing eye through activation of apoptosis. Development. 131 (10), 2409-2418 (2004).
  12. Cordero, J., Jassim, O., Bao, S., Cagan, R. A role for wingless in an early pupal cell death event that contributes to patterning the Drosophila eye. Mechanisms of development. 121 (12), 1523-1530 (2004).
  13. Mendes, C. S., et al. Cytochrome c‐d regulates developmental apoptosis in the Drosophila retina. EMBO reports. 7 (9), 933-939 (2006).
  14. Monserrate, J., Brachmann, C. B. Identification of the death zone: a spatially restricted region for programmed cell death that sculpts the fly eye. Cell Death & Differentiation. 14 (2), 209-217 (2007).
  15. Bushnell, H. L., et al. JNK is antagonized to ensure the correct number of interommatidial cells pattern the Drosophila retina. Developmental Biology. 433 (1), 94-107 (2018).
  16. Wolff, T. Dissection techniques for pupal and larval Drosophila eyes. CSH Protoc. 2007, (2007).
  17. Hsiao, H. Y., et al. Dissection and Immunohistochemistry of Larval, Pupal and Adult Drosophila Retinas. Journal of visualized experiments : JoVE. (69), e4347 (2012).
  18. Tea, J. S., Cespedes, A., Dawson, D., Banerjee, U., Call, G. B. Dissection and Mounting of Drosophila Pupal Eye Discs. Journal of Visualized Experiments : JoVE. (93), e52315 (2014).
  19. Johnson, R. I., Cagan, R. L. A Quantitative Method to Analyze Drosophila Pupal Eye Patterning. PLoS ONE. 4 (9), e7008 (2009).
  20. Greenspan, R. J. . Fly pushing : the theory and practice of Drosophila genetics. , (2004).
  21. Brand, A. H., Perrimon, N. Targeted gene expression as a means of altering cell fates and generating dominant phenotypes. Development. 118 (2), 401-415 (1993).
  22. Ellis, M. C., O’Neill, E. M., Rubin, G. M. Expression of Drosophila glass protein and evidence for negative regulation of its activity in non-neuronal cells by another DNA-binding protein. Development. 119 (3), 855-865 (1993).
  23. Duffy, B. J. GAL4 system in drosophila: A fly geneticist’s swiss army knife. genesis. 34 (1-2), 1-15 (2002).
  24. Li, W. Z., Li, S. L., Zheng, H. Y., Zhang, S. P., Xue, L. A broad expression profile of the GMR-GAL4 driver in Drosophila melanogaster. Genet Mol Res. 11 (3), 1997-2002 (2012).
  25. Song, Z., McCall, K., Steller, H. DCP-1, a Drosophila Cell Death Protease Essential for Development. Science. 275 (5299), 536-540 (1997).
  26. Hay, B. A., Wassarman, D. A., Rubin, G. M. Drosophila homologs of baculovirus inhibitor of apoptosis proteins function to block cell death. Cell. 83 (7), 1253-1262 (1995).

Play Video

Cite This Article
DeAngelis, M. W., Johnson, R. I. Dissection of the Drosophila Pupal Retina for Immunohistochemistry, Western Analysis, and RNA Isolation. J. Vis. Exp. (145), e59299, doi:10.3791/59299 (2019).

View Video