Vi mostriamo come codificare il campo complesso di raggi laser utilizzando un elemento monofase. Un interferometro di comune-percorso viene impiegato per mescolare le informazioni di fase visualizzate in un sola fase spaziale modulatore di luce finalmente recuperare il modello di campo complesso desiderato l’output di un sistema di imaging ottico.
Lo scopo di questo articolo è dimostrare visivamente con l’utilizzo di un metodo interferometrico per codifica complessi campi associati alle radiazioni laser coerente. Il metodo si basa sulla somma coerente di due onde uniforme, precedentemente codificati in un sola fase modulatore luce spaziale (SLM) di multiplexing spaziale delle loro fasi. Qui, il processo di interferenza avviene applicando un filtro spaziale di frequenze di luce sul piano di Fourier di certo sistema di imaging. La corretta attuazione di questo metodo consente di arbitrario fase e ampiezza informazioni da recuperare l’output del sistema ottico.
È una tecnica di codifica in asse, piuttosto che fuori asse, con un algoritmo di elaborazione diretta (non un ciclo iterativo) e senza rumore coerente (macchiolina). Il campo complesso può essere Estratto esattamente l’output del sistema ottico, ad eccezione di qualche perdita di risoluzione a causa del processo di filtraggio di frequenza. La principale limitazione del metodo potrebbe venire dall’incapacità di operare a tassi di frequenza superiore alla frequenza di aggiornamento di SLM. Le applicazioni includono, ma non sono limitate a, microscopia lineare e non lineari, formazione del fascio o micro-lavorazione laser di superfici di materiale.
Quasi tutte le applicazioni laser sono in stretta relazione con la gestione del fronte d’onda ottico della luce. Nell’approssimazione parassiale, campo complesso connesso con la radiazione laser può essere descritto da due termini, l’ampiezza e la fase. Avere il controllo su questi due termini è necessaria per modificare il temporale e la struttura spaziale dei fasci laser a volontà. In generale, l’ampiezza e la fase di un fascio laser può essere correttamente modificati con vari metodi, compreso l’uso di componenti ottici che vanno da lenti di massa singola, beam splitter e specchi a dispositivi più complessi come specchi deformabili o luce spaziale modulatori. Qui, vi mostriamo un metodo per la codifica e ricostruendo il campo complesso di fasci laser coerente, che si basa sulla teoria di ologramma di doppio-fase1e l’utilizzo di un interferometro di comune-percorso.
Al giorno d’oggi, esiste una vasta gamma di metodi per codificare i campi complessi di laser travi2,3,4,5. In questo contesto, alcuni metodi consolidati per produrre modulazione di ampiezza e fase si basano sull’uso di ologrammi digitale6. Un punto comune a tutti questi metodi è la necessità di generare un offset spaziale per separare il fascio di output desiderato dall’ordine dello zeroth provenienti dalla riflessione della luce sul display SLM. Questi metodi sono fondamentalmente fuori asse (solitamente l’applicazione per il primo ordine di diffrazione della grata), che impiegano grata di fase non solo per codificare la fase, ma anche di introdurre la necessaria modulazione di ampiezza. In particolare, la modulazione di ampiezza viene eseguita da spazialmente abbassando l’altezza della grata, che chiaramente si riduce l’efficienza di diffrazione. Il processo di ricostruzione di ologramma ottiene principalmente una ricostruzione approssimativa, ma non esatta, dell’ampiezza e fase del complesso campo desiderato. Discrepanze tra teoria ed esperimento sembrano apparire da un’imprecisa codifica le informazioni di ampiezza, nonché altri problemi sperimentali accadendo durante il filtraggio spaziale del primo ordine di diffrazione o a causa di effetti pixilation SLM. Inoltre, il profilo di intensità del fascio luminoso ingresso può introdurre restrizioni la potenza in uscita.
Al contrario, con il metodo introdotto7, tutti i gestione della luce avviene lungo l’asse, che è molto conveniente da un punto di vista sperimentale. Inoltre, essa si avvale di considerare, nell’approssimazione parassiale, campo complesso associato con raggi laser come una somma di due onde uniforme. Le informazioni di ampiezza sono sintetizzato tramite l’interferenza di queste onde uniforme. In pratica, tale interferenza avviene tramite filtro spaziale di frequenze di luce sul piano di Fourier di un determinato sistema di imaging. In precedenza, i modelli di fase connessi con le onde uniforme nello spazio sono multiplexati e codificati in una sola fase SLM (posizionato sul piano di ingresso di questo sistema di imaging). Quindi, l’installazione tutto ottico può essere considerato come un interferometro di comune-percorso (molto robusto contro le vibrazioni meccaniche, cambiamenti di temperatura o disallineamenti ottici). Si prega di notare che il processo di interferenza di cui sopra può essere realizzato in alternativa utilizzando altri layout ottico: con un paio di sola fase slm posizionato correttamente all’interno di un tipico interferometro di due-braccio, o di tempo in sequenza codifica il bifase modelli in SLM (precedente introduzione di uno specchio di riferimento nell’impostazione di ottica). In entrambi i casi, non c’è nessuna necessità di filtro spaziale e di conseguenza senza perdita di risoluzione spaziale, a scapito di aumentare la complessità del sistema ottico, come pure il processo di allineamento. Qui, va anche sottolineato che utilizzando questo metodo di codifica, l’intero spettro del campo complesso desiderato può essere Estratto esattamente sul piano della trasformata di Fourier, dopo il filtraggio di tutti gli ordini di diffrazione, ma il numero zero uno.
D’altra parte, l’efficienza del metodo dipende da diversi fattori: le specifiche del produttore di SLM (ad es., fill factor, riflettività o diffrazione efficienza), la dimensione del pattern codificato e il modo in cui la luce incide sulla SLM (riflessione con un piccolo angolo di colpire, o incidenza normale utilizzando un divisore di fascio). A questo punto, in condizioni sperimentali adeguate, l’efficienza luminosa totale misurata può essere superiore al 30%. Tuttavia, si noti che che l’efficienza luminosa totale solo grazie all’uso di SLM può essere inferiore al 50%. La mancanza di casuale o elementi di diffusore interno ottica installazione permette il recupero dei modelli di ampiezza e fase senza rumore coerente (macchiolina). Altri aspetti significativi da sottolineare sono l’utilizzo di un algoritmo di codificazione diretto piuttosto che procedure iterative e la sua capacità di eseguire arbitraria ed indipendente di ampiezza e modulazione di fase alla frequenza di aggiornamento tempo di SLM (fino a centinaia di hertz secondo la tecnologia attuale).
In linea di principio, il metodo7 è destinato a essere utilizzato con onde piane input, ma non è limitato a quello. Per esempio, se un fascio gaussiano sta colpendo la SLM, è possibile modificare la forma di irraggiamento l’output del sistema dalla codifica di un modello adatto di ampiezza in SLM. Tuttavia, come l’intensità del fascio di uscita non può superare quello del fascio luminoso ingresso in qualsiasi posizione trasversale (x, y), la modellatura dell’ampiezza viene eseguita dalle perdite di intensità originate da un processo di interferenza distruttiva parzialmente.
La teoria sottolineando la codifica di metodo7 è come segue. Qualsiasi campo complesso rappresentato in forma U(x,y)= A(x,y)eφ(x,y) può anche essere riscritta come:
(1)
dove
(2)
(3)
Nelle equazioni 1-3, l’ampiezza e la fase del complesso bidimensionale campo U(x,y)è dato da A(x,y) e φ(x,y), rispettivamente. Si noti che, in termini di unmax (massimo di A(x,y)) e B = unmax/2 non dipendono le coordinate trasversale (x,y). Dalla teoria, se abbiamo impostato unmax= 2, allora B =1. Quindi, il campo complesso U(x,y) può essere ottenuta, in modo semplice, dalla somma coerente di uniforme onde essereioϑ(x,y) e essere iΘ (x,y). In pratica, questa operazione viene eseguita con un interferometro di comune-percorso costituito da una singola fase elemento α(x,y), posizionato sul piano di ingresso di un sistema di imaging. L’elemento di monofase è costruito di multiplexing spaziale dei termini di fase ϑ(x,y)
e θ (x,y) con l’aiuto di grigliati binari bidimensionale (scacchiera) M1(x,y) e M.2(x,y) come segue
(4)
da qui,
(5)
Questi modelli binari soddisfano la condizione M1(x,y) + M2(x,y) = 1. Si noti che, l’interferenza delle onde uniforme non può avvenire se non mescoliamo le informazioni contenute nel elemento di faseα(x,y). Il presente metodo, questo avviene utilizzando un filtro spaziale in grado di bloccare tutti gli ordini di diffrazione, ma il numero zero uno. In questo modo, dopo il processo di filtraggio sul piano della trasformata di Fourier, lo spettro H(u,v)= F{eiα(x,y)} della fase codificata funzione è legata allo spettro del campo complesso F{U(x,y)} dall’espressione
(6)
Nella sezione EQ. (6), (u,v) denotare coordinate nel dominio della frequenza, P(u,v) vale per il filtro spaziale, mentre la trasformata di Fourier di una funzione specificata Θ(x,y) è rappresentato in forma F {Θ(x,y)}. Da EQ. (6), ne consegue che, sul piano di uscita del sistema di imaging, il campo complesso Estratto URET(x,y), (senza considerare fattori costanti), è dato dalla convoluzione dell’ingrandita e spazialmente invertito campo complesso U(x,y) con la trasformata di Fourier della maschera di filtro. Cioè:
(7)
In EQ. (7), l’operazione di convoluzione è denotato dal simbolo e il termine Mag rappresenta l’ingrandimento del sistema di imaging. Quindi, l’ampiezza e la fase di U(x,y) è completamente Estratto piano di uscita, ad eccezione di qualche perdita di risoluzione spaziale a causa dell’operazione di convoluzione.
In questo protocollo, parametri pratici come la larghezza in pixel di sola fase SLM o il numero di pixel contenuti all’interno delle cellule di pixel di un modello generato da calcolatore sono punti chiave per implementare con successo il metodo di codifica. In pochi passi 1.2, 1.3 e 1.4 del protocollo, più è breve la larghezza in pixel, migliore è la risoluzione spaziale dei modelli Estratto di ampiezza e fase. Inoltre, come la codificazione in SLM di brusche modulazioni di fase di pixel per pixel può originare risp…
The authors have nothing to disclose.
Questa ricerca è stata sostenuta dalla Generalitat Valenciana (PROMETEO 2016-079), Universitat Jaume I (UJI) (UJIB2016-19); e Ministerio de Economía y Competitividad (MINECO) (FIS2016-75618-R). Gli autori sono molto grati per la SCIC di Universitat Jaume I per l’utilizzo del laser a femtosecondi.
Achromatic Doublet | THORLABS | AC254-100-B-ML | Lens Diameter 25.4 mm, focal length 100 mm |
Achromatic Galilean Beam Expander | THORLABS | GBE05-A | AR Coated: 400 – 650 nm |
Basler camera | BASLER | avA1600-50gm GigE camera | sensor size 8.8 mm x 6.6 mm, pizel size 5.5 microns |
Mounted Zero-Aperture Iris | THORLABS | ID12Z/M | Max Aperture 12 mm |
Pellicle Beamsplitter | THORLABS | CM1-BP145B2 | 45:55 (R:T), Coating: 700 – 900 nm |
PLUTO Spatial Light Modulator | HOLOEYE Photonics AG | NIR-II | Phase Only Spatial Light Modulator (Optimized for 700 -1000 nm) |
Two thin film laser polarizers | EKSMA OPTICS | 420-0526M | material BK7, diameter 50 mm, wavelength 780-820 nm |