Summary

Preparação de fungos e materiais vegetais para a elucidação estrutural usando polarização Nuclear dinâmica NMR Solid-State

Published: February 12, 2019
doi:

Summary

Um protocolo para a preparação de 13C,15amostras de fungos e plantas N-etiquetados para investigações de polarização nuclear dinâmica (DNP) e espectroscopia NMR Solid-State multidimensional é apresentado.

Abstract

Este protocolo mostra como uniformemente 13C, 15N-rotulado materiais fúngicos podem ser produzidos e como estes materiais macios devem ser procedeu para NMR Solid-State e DNP sensibilidade melhorada dos experimentos. O procedimento de processamento da amostra de biomassa de planta também é detalhado. Este método permite a medição de uma série de 1D e 2D 13C –13C / espectros de correlações15N, que permite a elucidação estrutural de alta resolução de biomateriais complexos em seu estado nativo, com mínima perturbação. O isótopo-rotulagem pode ser examinado através da quantificação da intensidade em espectros de 1D e a eficiência de transferência de polarização em espectros de correlação 2D. O sucesso da preparação da amostra de polarização nuclear dinâmica (DNP) pode ser avaliado pelo fator de aumento de sensibilidade. Novas experiências, examinando os aspectos estruturais dos polissacarídeos e proteínas conduzirá a um modelo da arquitetura tridimensional. Esses métodos podem ser modificados e adaptados para investigar uma ampla gama de materiais ricos em carboidratos, incluindo as paredes celulares naturais de plantas, fungos, algas e bactérias, bem como sintetizado ou projetado, polímeros de carboidratos e seus complexos com outros moléculas.

Introduction

Hidratos de carbono desempenham um papel central em vários processos biológicos, tais como armazenamento de energia, construção estrutural e reconhecimento celular e adesão. Eles são enriquecidos na parede celular, que é um componente fundamental em plantas, fungos, algas e bactérias1,2,3. Parede celular serve como uma fonte central para a produção de biocombustível e biomateriais, bem como um alvo promissor para terapias antimicrobiana4,5,6,7,8 , 9.

A compreensão contemporânea destes materiais complexos tem sido substancialmente avançada por décadas de esforços que foram dedicados à caracterização estrutural usando quatro principais métodos bioquímicos ou genéticos. O primeiro método principal se baseia em tratamentos sequenciais usando produtos químicos ou enzimas para quebrar as paredes celulares em porções diferentes, que é seguido por composição e análise de enlace de açúcares em cada fração de10. Este método lança luz sobre a distribuição de domínio de polímeros, mas a interpretação pode ser enganosa devido às propriedades físicas e químicas das biomoléculas. Por exemplo, é difícil determinar se a fração alcaloide extraíveis origina-se de um único domínio de moléculas menos estruturadas ou de moléculas espacialmente separadas com solubilidade comparável. Em segundo lugar, a porções extraídas ou paredes de célula inteira pode também ser medidas usando solução NMR para determinar as ligações covalentes, também denominadas como reticulação, entre diferentes moléculas11,12,13, 14,15. Desta forma, a estrutura detalhada das ligações covalentes âncoras poderia ser sondada, mas limitações podem existir devido a baixa solubilidade de polissacarídeos, o número relativamente pequeno de sites de reticulação e a ignorância dos efeitos não-covalente que estabiliza embalagem de polissacarídeo, incluindo a ligação do hidrogênio, força de van der Waals, interação eletrostática e entrelaçamento de polímero. Em terceiro lugar, a afinidade obrigatória tem sido determinada em vitro usando polissacarídeos isolados16,17,18,19, mas a purificação procedimentos podem alterar substancialmente a estrutura e propriedades destas biomoléculas. Esse método também não consegue replicar a deposição sofisticada e montagem de macromoléculas após a biossíntese. Finalmente, o fenótipo, morfologia celular e propriedades mecânicas dos mutantes genéticos com produção atenuada de determinado componente da parede celular lançar luzes sobre as funções estruturais dos polissacarídeos, mas evidências moleculares mais é necessário para colmatar estas observações macroscópicas com a função engenharia de proteína machineries20.

Recentes avanços no desenvolvimento e aplicação de espectroscopia NMR Solid-State multidimensional introduziram uma oportunidade única para resolver estes enigmas estruturais. 2D/3D Solid-State NMR experimentos permitem investigação high-resolution da composição e arquitetura de materiais ricos em carboidratos no estado nativo, sem grandes perturbações. Estudos estruturais têm sido realizados com sucesso no primário e paredes celulares secundárias de plantas, a biomassa tratada cataliticamente, biofilme bacteriano, o pigmento fantasmas em fungos e, recentemente pelos autores, as paredes celulares intactos em um fungo patogênico Aspergillus fumigatus 21 , 22 , 23 , 24 , 25 , 26 , 27 , 28 , 29 , 30 , 31. o desenvolvimento da polarização nuclear dinâmica (DNP)32,33,34,35,36,37,38 , 39 , 40 , 41 , 42 substancialmente facilita a elucidação estrutural de NMR como o aprimoramento da sensibilidade pela DNP marcadamente encurta o tempo experimental em biomateriais estes complexos. O protocolo descrito aqui detalha os procedimentos para o fungo a. fumigatus isótopo-rotulagem e preparando fúngicas e amostras da planta para a caracterização do estado sólida NMR e DNP. Procedimentos de rotulagem semelhantes devem ser aplicáveis a outros fungos com meio alterado, e os procedimentos de preparação de amostra devem ser geralmente aplicáveis a outros biomateriais ricos em carboidratos.

Protocol

1. crescimento de 13C, 15N-rotulado Aspergillus fumigatus meio líquido Preparação de sem rótulo e 13C, meio de crescimento N-rotulado de 15Nota: Os dois meio de levedura extrato peptona Dextrose (YPD) e o melhor médio mínimo43 foram utilizados para a manutenção da cultura fúngica. Todas as etapas após a autoclavagem são executadas em uma capa de fluxo laminar para minimizar a contaminação. Preparação de meio …

Representative Results

A rotulagem de isótopo substancialmente aumenta a sensibilidade de NMR e torna possível para medir uma série de 13C -15N correlação espectros para analisar a composição, hidratação, mobilidade e 2D 13C -13C e embalagem de polímeros, que serão integrados para construir um modelo tridimensional de arquitetura da parede celular (Figura 1). Se a rotulagem uniforme for bem-sucedido, um conjunto completo de esp…

Discussion

Comparado com os métodos bioquímicos, NMR Solid-State tem vantagens como uma técnica não-destrutiva e em alta resolução. NMR também é quantitativa na análise composicional, e ao contrário da maioria dos outros métodos analíticos, não terá as incertezas introduzido pela solubilidade limitada de biopolímeros. Estabelecimento do protocolo atual facilita estudos futuros sobre biomateriais ricos em carboidratos e polímeros funcionalizados. No entanto, deve notar-se que a análise de dados e atribuição de res…

Disclosures

The authors have nothing to disclose.

Acknowledgements

Este trabalho foi financiado pela National Science Foundation através da NSF OIA-1833040. O laboratório nacional de campo magnético elevado (NHMFL) é suportado pela National Science Foundation através de DMR-1157490 e o estado da Flórida. O sistema MAS-DNP no NHMFL é financiado em parte pelo NIH S10 OD018519 e NSF CHE-1229170.

Materials

Ammonium Molybdate Tetrahydrate Acros Organics 12054-85-2
AMUPol Cortecnet C010P002
Analytical weighing balance Ohaus B730439218 Model PA84C
Bioclave 16 L VWR 470230-598
Biosafety Cabinet Labconco corporation 302319100
Boric acid VWR BDH9222 store at 15-30 °C
Cobalt(II) Chloride Hexahydrate Honeywell|Fluka 60820 ≥98 %
Copper(II) Sulfate Pentahydrate BDH BDH9312 ≥98 %
Corning LSE shaking incubator Thermo Fisher Scientific 7202152
D2O Sigma Aldrich 151882 99.9 atom % D
d6-DMSO Sigma Aldrich 151874 99.9 atom % D
d8-glycerol Sigma Aldrich 447498 ≥99 atom % D
Dialysis tubing 3.2 kDa Sigma Aldrich D2272 132724
Dipotassium Phosphate VWR BDH9266 ≥98 %
Glycerol Sigma Aldrich G5516 ≥99.5 %
Heraus Megafuge 16R Centrifuge Thermo Fischer Scientific 750004271 Maximum RCF 25,830 x g
HR-MAS Disposable Insert Kit Bruker B4493 Kel-F
Iron(II) Sulfate Heptahydrate Alfa Aesar 14498 ≥99+ %
Magnesium Sulfate Heptahydrate VWR 10034998 store at 18-26 °C
Manganese(II) Chloride Tetrahydrate Alfa Aesar 11563 ≥99 %
Monopotassium Phosphate VWR 470302-254 ≥99 %
pH Meter Mettler Toledo B706689216
Tetrasodium Ethylenediaminetetraacetate Acros Organics 13235-36-9 ≥99.5 %
Zinc Sulfate Heptahydrate Alfa Aesar 33399 ≥98 %
12C3, d8-glycerol Cambridge Isotope Laboratory CDLM-8660 12C3, 99.95%; D8, 98%
13C6-glucose Sigma Alrdrich 364606 ≥99 % (CP)
15N-sodium nitrate Sigma Aldrich 364606 ≥98 % 15N, ≥99 (cp)
3.2 mm sapphire NMR rotor Cortecnet B6939
3.2 mm Silicone plug Bruker B7089
4 mm MAS Rotor Kit Bruker H14355 Zirconia

References

  1. Murrey, H. E., Hsieh-Wilson, L. C. The chemical neurobiology of carbohydrates. Chemical Reviews. 108 (5), 1708-1731 (2008).
  2. Latge, J. P. The cell wall: a carbohydrate armour for the fungal cell. Molecular Microbiology. 66 (2), 279-290 (2007).
  3. Cosgrove, D. J. Growth of the plant cell wall. Nature Reviews Molecular Cell Biology. 6 (11), 850-861 (2005).
  4. Furtado, A., et al. Modifying plants for biofuel and biomaterial production. Plant Biotechnology Journal. 12 (9), 1246-1258 (2014).
  5. Loqué, D., Scheller, H. V., Pauly, M. Engineering of plant cell walls for enhanced biofuel production. Current Opinion in Plant Biology. 25, 151-161 (2015).
  6. Latge, J. P. Aspergillus fumigatus and aspergillosis. Clinical Microbiology Reviews. 12 (2), 310-350 (1999).
  7. Ragauskas, A. J., et al. The path forward for biofuels and biomaterials. Science. 311 (5760), 484-489 (2006).
  8. Service, R. F. Cellulosic ethanol – Biofuel researchers prepare to reap a new harvest. Science. 315 (5818), 1488-1491 (2007).
  9. Somerville, C., Youngs, H., Taylor, C., Davis, S. C., Long, S. P. Feedstocks for Lignocellulosic Biofuels. Science. 329 (5993), 790-792 (2010).
  10. Schiavone, M., et al. A combined chemical and enzymatic method to determine quantitatively the polysaccharide components in the cell wall of yeasts. FEMS Yeast Research. 14 (6), 933-947 (2014).
  11. Cheng, K., Sorek, H., Zimmermann, H., Wemmer, D. E., Pauly, M. Solution-State 2D NMR Spectroscopy of Plant Cell Walls Enabled by a Dimethylsulfoxide-d(6)/1-Ethyl-3-methylimidazolium Acetate Solvent. Analytical Chemistry. 85 (6), 3213-3221 (2013).
  12. Mansfield, S. D., Kim, H., Lu, F. C., Ralph, J. Whole plant cell wall characterization using solution-state 2D NMR. Nature Protocols. 7 (9), 1579-1589 (2012).
  13. Tan, L., et al. An Arabidopsis Cell Wall Proteoglycan Consists of Pectin and Arabinoxylan Covalently Linked to an Arabinogalactan Protein. Plant Cell. 25 (1), 270-287 (2013).
  14. Kollar, R., Petrakova, E., Ashwell, G., Robbins, P. W., Cabib, E. Architecture of the Yeast-Cell Wall – the Linkage between Chitin and Beta(1-3)-Glucan. Journal of Biological Chemistry. 270 (3), 1170-1178 (1995).
  15. Kollar, R., et al. Architecture of the yeast cell wall – beta(1->6)-glucan interconnects mannoprotein, beta(1-3)-glucan, and chitin. Journal of Biological Chemistry. 272 (28), 17762-17775 (1997).
  16. Mccann, M. C., et al. Old and new ways to probe plant cell wall architecture. Canadian Journal of Botany. 73, S103-S113 (1995).
  17. Whitney, S. E. C., Brigham, J. E., Darke, A. H., Reid, J. S. G., Gidley, M. J. In-Vitro Assembly of Cellulose/Xyloglucan Networks – Ultrastructural and Molecular Aspects. The Plant Journal. 8 (4), 491-504 (1995).
  18. Zykwinska, A. W., Ralet, M. C. J., Garnier, C. D., Thibault, J. F. J. Evidence for in vitro binding of pectin side chains to cellulose. Plant Physiology. 139 (1), 397-407 (2005).
  19. Kiemle, S. N., et al. Role of (1,3)(1,4)-beta-Glucan in Cell Walls: Interaction with Cellulose. Biomacromolecules. 15 (5), 1727-1736 (2014).
  20. Pogorelko, G., Lionetti, V., Bellincampi, D., Zabotina, O. Cell wall integrity: targeted post-synthetic modifications to reveal its role in plant growth and defense against pathogens. Plant Signaling & Behavior. 8 (9), e25435 (2013).
  21. Wang, T., Park, Y. B., Cosgrove, D. J., Hong, M. Cellulose-Pectin Spatial Contacts Are Inherent to Never-Dried Arabidopsis thaliana Primary Cell Walls: Evidence from Solid-State NMR. Plant Physiology. 168 (3), 871-884 (2015).
  22. Wang, T., Salazar, A., Zabotina, O. A., Hong, M. Structure and dynamics of Brachypodium primary cell wall polysaccharides from two-dimensional 13C solid-state nuclear magnetic resonance spectroscopy. Biochemistry. 53 (17), 2840-2854 (2014).
  23. Grantham, N. J., et al. An even pattern of xylan substitution is critical for interaction with cellulose in plant cell walls. Nature Plants. 3 (11), 859-865 (2017).
  24. Simmons, T. J., et al. Folding of xylan onto cellulose fibrils in plant cell walls revealed by solid-state NMR. Nature Communications. 7, 13902 (2016).
  25. Komatsu, T., Kikuchi, J. Selective Signal Detection in Solid-State NMR Using Rotor-Synchronized Dipolar Dephasing for the Analysis of Hemicellulose in Lignocellulosic Biomass. The Journal of Physical Chemistry Letters. 4 (14), 2279-2283 (2013).
  26. Perras, F. A., et al. Atomic-Level Structure Characterization of Biomass Pre- and Post-Lignin Treatment by Dynamic Nuclear Polarization-Enhanced Solid-State NMR. The Journal of Physical Chemistry A. 121 (3), 623-630 (2017).
  27. Chatterjee, S., Prados-Rosales, R., Itin, B., Casadevall, A., Stark, R. E. Solid-state NMR Reveals the Carbon-based Molecular Architecture of Cryptococcus neoformans Fungal Eumelanins in the Cell Wall. Journal of Biological Chemistry. 290 (22), 13779-13790 (2015).
  28. Zhong, J., Frases, S., Wang, H., Casadevall, A., Stark, R. E. Following fungal melanin biosynthesis with solid-state NMR: biopolymer molecular structures and possible connections to cell-wall polysaccharides. Biochemistry. 47 (16), 4701-4710 (2008).
  29. Kang, X., et al. Molecular architecture of fungal cell walls revealed by solid-state NMR. Nature Communications. 9 (1), 2747 (2018).
  30. Takahashi, H., et al. Solid-state NMR on bacterial cells: selective cell wall signal enhancement and resolution improvement using dynamic nuclear polarization. Journal of the American Chemical Society. 135 (13), 5105-5110 (2013).
  31. Wang, T., Hong, M. Solid-state NMR investigations of cellulose structure and interactions with matrix polysaccharides in plant primary cell walls. Journal of Experimental Botany. 67, 503-514 (2016).
  32. Mentink-Vigier, F., Akbey, &. #. 2. 2. 0. ;., Oschkinat, H., Vega, S., Feintuch, A. Theoretical aspects of magic angle spinning-dynamic nuclear polarization. Journal of Magnetic Resonance. 258, 102-120 (2015).
  33. Gupta, R., et al. Dynamic nuclear polarization enhanced MAS NMR spectroscopy for structural analysis of HIV-1 protein assemblies. The Journal of Physical Chemistry B. 120 (2), 329-339 (2016).
  34. Takahashi, H., Hediger, S., De Paëpe, G. Matrix-free dynamic nuclear polarization enables solid-state NMR 13 C-13 C correlation spectroscopy of proteins at natural isotopic abundance. Chemical Communications. 49 (82), 9479-9481 (2013).
  35. Ni, Q. Z., et al. High frequency dynamic nuclear polarization. Accounts of Chemical Research. 46 (9), 1933-1941 (2013).
  36. Koers, E. J., et al. NMR-based structural biology enhanced by dynamic nuclear polarization at high magnetic field. Journal of Biomolecular NMR. 60 (2-3), 157-168 (2014).
  37. Saliba, E. P., et al. Electron Decoupling with Dynamic Nuclear Polarization in Rotating Solids. Journal of the American Chemical Society. 139 (18), 6310-6313 (2017).
  38. Mentink-Vigier, F., et al. Efficient cross-effect dynamic nuclear polarization without depolarization in high-resolution MAS NMR. Chemical Science. 8 (12), 8150-8163 (2017).
  39. Smith, A. N., Twahir, U. T., Dubroca, T., Fanucci, G. E., Long, J. R. Molecular Rationale for Improved Dynamic Nuclear Polarization of Biomembranes. The Journal of Physical Chemistry B. 120 (32), 7880-7888 (2016).
  40. Su, Y., Andreas, L., Griffin, R. G. Magic angle spinning NMR of proteins: high-frequency dynamic nuclear polarization and 1H detection. Annual Reviews of Biochemistry. 84, 465-497 (2015).
  41. Hediger, S., Lee, S., Mentink-Vigier, F., Paepe, G. D. MAS-DNP Enhancements: Hyperpolarization, Depolarization, and Absolute Sensitivity. eMagRes. 7, 1-13 (2018).
  42. Ni, Q. Z., et al. In Situ Characterization of Pharmaceutical Formulations by Dynamic Nuclear Polarization Enhanced MAS NMR. The Journal of Physical Chemistry B. 121 (34), 8132-8141 (2017).
  43. Hill, T. W., Kafer, E. Improved protocols for Aspergillus minimal medium: trace element and minimal medium salt stock solutions. Fungal Genetics Reports. 48 (1), 20-21 (2001).
  44. Rossini, A. J., et al. Dynamic nuclear polarization surface enhanced NMR spectroscopy. Accounts of Chemical Research. 46 (9), 1942-1951 (2013).
  45. Sauvée, C., et al. Highly efficient, water-soluble polarizing agents for dynamic nuclear polarization at high frequency. Angewandte Chemie International Edition. 125 (41), 11058-11061 (2013).
  46. Phyo, P., et al. Gradients in Wall Mechanics and Polysaccharides along Growing Inflorescence Stems. Plant physiology. 175 (4), 1593-1607 (2017).
  47. White, P. B., Wang, T., Park, Y. B., Cosgrove, D. J., Hong, M. Water-polysaccharide interactions in the primary cell wall of Arabidopsis thaliana from polarization transfer solid-state NMR. Journal of the American Chemical Society. 136 (29), 10399-10409 (2014).
  48. Jippo, T., Kamo, O., Nagayama, K. Determination of long-range proton-carbon 13 coupling constants with selective two-dimensional INEPT. Journal of Magnetic Resonance. 66 (2), 344-348 (1969).
  49. Morris, G. A. Sensitivity enhancement in nitrogen-15 NMR: polarization transfer using the INEPT pulse sequence. Journal of the American Chemical Society. 102 (1), 428-429 (1980).
  50. Cadars, S., et al. The refocused INADEQUATE MAS NMR experiment in multiple spin-systems: interpreting observed correlation peaks and optimising lineshapes. Journal of Magnetic Resonance. 188 (1), 24-34 (2007).
  51. Lesage, A., Bardet, M., Emsley, L. Through-bond carbon− carbon connectivities in disordered solids by NMR. Journal of the American Chemical Society. 121 (47), 10987-10993 (1999).
  52. Bennett, A. E., et al. Homonuclear radio frequency-driven recoupling in rotating solids. The Journal of Chemical Physics. 108 (22), 9463-9479 (1998).
  53. Lu, X., Guo, C., Hou, G., Polenova, T. Combined zero-quantum and spin-diffusion mixing for efficient homonuclear correlation spectroscopy under fast MAS: broadband recoupling and detection of long-range correlations. Journal of Biomolecular NMR. 61 (1), 7-20 (2015).
  54. Wang, T., Zabotina, O., Hong, M. Pectin-cellulose interactions in the Arabidopsis primary cell wall from two-dimensional magic-angle-spinning solid-state nuclear magnetic resonance. Biochemistry. 51 (49), 9846-9856 (2012).
  55. Wang, T., Yang, H., Kubicki, J. D., Hong, M. Cellulose Structural Polymorphism in Plant Primary Cell Walls Investigated by High-Field 2D Solid-State NMR Spectroscopy and Density Functional Theory Calculations. Biomacromolecules. 17 (6), 2210-2222 (2016).
  56. Kirui, A., et al. Atomic Resolution of Cotton Cellulose Structure Enabled by Dynamic Nuclear Polarization Solid-State NMR. Cellulose. , (2019).
  57. Wang, T., et al. Sensitivity-enhanced solid-state NMR detection of expansin’s target in plant cell walls. Proceedings of the National Academy of Sciences of the United States of America. 110 (41), 16444-16449 (2013).
  58. Wang, T., Park, Y. B., Cosgrove, D. J., Hong, M. Cellulose-Pectin Spatial Contacts Are Inherent to Never-Dried Arabidopsis thaliana Primary Cell Walls: Evidence from Solid-State NMR. Plant Physiology. 168 (3), 871-884 (2015).
  59. Liao, S. Y., Lee, M., Wang, T., Sergeyev, I. V., Hong, M. Efficient DNP NMR of membrane proteins: sample preparation protocols, sensitivity, and radical location. Journal of Biomolecular NMR. 64 (3), 223-237 (2016).
  60. Kang, X., et al. Lignin-Polysaccharide Interactions in Plant Secondary Cell Walls Revealed by Solid-State NMR. Nature Communications. 10, 347 (2019).
  61. Takahashi, H., et al. Rapid Natural-Abundance 2D 13C-13C Correlation Spectroscopy Using Dynamic Nuclear Polarization Enhanced Solid-State NMR and Matrix-Free Sample Preparation. Angewandte Chemie International Edition. 51 (47), 11766-11769 (2012).

Play Video

Cite This Article
Kirui, A., Dickwella Widanage, M. C., Mentink-Vigier, F., Wang, P., Kang, X., Wang, T. Preparation of Fungal and Plant Materials for Structural Elucidation Using Dynamic Nuclear Polarization Solid-State NMR. J. Vis. Exp. (144), e59152, doi:10.3791/59152 (2019).

View Video