Summary

取り込みと培養細胞における機能性 Nanobodies を用いたトランスゴルジ ネットワークへの逆行性輸送の解析

Published: February 21, 2019
doi:

Summary

ゴルジ体細胞表面からタンパク質の逆行輸送は膜の恒常性を維持するために不可欠です。ここでは、HeLa 細胞における機能性 nanobodies を用いた組換えタンパク質の細胞表面にゴルジ体輸送を生化学的解析法について述べる。

Abstract

タンパク質とゴルジ体内外細胞表面膜の輸送は、恒常性、細胞小器官アイデンティティおよび生理学に不可欠です。逆行性プロテイン トラフィックを研究、細胞表面から固定しライブの細胞イメージング、電子顕微鏡検査、または生化学的、ゴルジ複合体への輸送を分析するための多彩な生物学: ナノボディでベースのツールキットを最近開発しました。我々 設計機能抗緑の蛍光蛋白質 (GFP) nanobodies-小さな、単量体、高親和性タンパク質バインダー-細胞外の GFP 部分と利子の膜蛋白質を表現する細胞へ適用することができます。GFP レポーターにバインドし誘導体化 nanobodies 具体的に内在化されているし、記者の並べ替えルートに沿ってピギーバック輸送。Nanobodies 蛍光顕微鏡による逆行性輸送に従うとライブ イメージング、アスコルビン酸ペルオキシダーゼ 2 電子記者生物学: ナノボディで複合体の電顕的局在を調べる (APEX2) fluorophores が付いている修飾されました。顕微鏡とトランスゴルジ ネットワーク (TGN) 到着の動態を評価するためにチロシン硫酸化 (TS) をモチーフにしました。この方法論の記事で細菌によって表現し、機能性 nanobodies を浄化する一般的な手順の概要を説明します。取り込みや TGN 到着貨物蛋白質を分析する mCherry と TS 変更 nanobodies を使用して私たちのツールの強力な使用をについて説明します。

Introduction

タンパク質や細胞表面からさまざまな細胞内コンパートメントに脂質の逆行のトラフィックは分泌を相殺して前向性輸送機械1のコンポーネントを再利用する膜の恒常性の維持のために重要,2内面化クラスリン依存または独立したエンドサイトーシスを介して、以下貨物蛋白質と脂質を設定初期エンドソームからさらには細胞膜にリサイクル、遠藤ライソゾーム システムに沿っていずれかをリダイレクト。または、トランスゴルジ ネットワーク (TGN) にターゲットを絞った。前向性膜貫通貨物受容体、カチオン依存性および陽イオンに依存しないマンノース-6-リン酸受容体 (CDMPR ・ CIMPR) などの多数の機能サイクルの一部である、TGN にエンドソームや細胞表面からリサイクルを提供します。後期エンドソーム、リソソーム3,45ソーティリンと SorLA67トランスゴルジ (WLS) 細胞表面に Wnt リガンドを輸送、TGN からライソゾーム加水分解酵素を合成しました。8,9,10,11.、TGN に戻るを取得する他の蛋白質は TGN46 とその関連アイソ フォーム12,13,14スネア (可溶性Nエチルマレイミド感受性融合因子添付ファイル受容体)15,16,17、アミロイド前駆体タンパク質 (APP)18,19、進歩的な強直 (アンク) 蛋白質20、金属トランスポーター ATP7A/B または DMT121,22, などと膜貫通酵素カルボキシペプチダーゼ D、風鈴 BACE123,24,25などを処理します。これらの内因性のタンパク質から離れて細菌植物毒素 (例えば、滋賀とコレラ毒素、リシン、アブリン) ハイジャックに細胞質26,27、retrotranslocation の小胞体に到達する逆行輸送機械 28,29

逆行性のトラフィックを直接分析するために以前にラベルを貨物蛋白質を細胞表層から細胞内コンパートメント30に従ってください生物学: ナノボディでベースのツールキットを開発しました。Nanobodies は、タンパク質バインダー量重鎖だけ抗体 (hcAbs) ラクダ科動物、軟骨魚類の31,32で発生する自然由来の新しいファミリを表します。HcAbs の変数の重鎖のドメイン (VHH) を構成し、従来の抗体 (Igg など) に比べて多くの利点がある: 彼らは単量体、小さな (~ 15 kDa)、非常に溶ける、二硫化物結束を欠いている細菌によって表される、選択することができます高親和性結合33,34,35,36。私たちの生物学: ナノボディでツールをするためには、汎用性と広く適用/内腔細胞外ドメインに GFP が付いた表面ラベルとトラックのタンパク質機能抗 GFP nanobodies を採用しました。(APEX2) アスコルビン酸ペルオキシダーゼ 2 mCherry と nanobodies の機能化によって真正な貨物の膜貫通タンパク質の37、またはチロシン硫酸化 (TS) シーケンスの逆行輸送どちらか固定で分析することができますなど、ライブセル イメージングで電子顕微鏡検査、または生化学的。チロシン硫酸化チロシン硫酸化硫酸転移酵素 (TPST1 および TPST2) で媒介はトランス Golgi に制限修飾 TGN、直接勉強できるトランスポートおよびこれに細胞表層の興味の蛋白質の動態/細胞ゴルジ区画38,39,40

この方法の記事で哺乳類セル30における逆行性輸送を分析するアプリケーションの数に適した機能性 nanobodies (VHH 2xTS、- APEX2、- mCherry 誘導体) の生産の容易さについて述べる。我々 は主に硫酸化のコンパートメントに細胞表層から細胞内トラフィックの分析のための TS サイト変更生物学: ナノボディでの使用に焦点を当てます。

Protocol

1. 細菌変換機能 Nanobodies 注:このプロトコルは、前述の30式、浄化、機能性抗 GFP nanobodies の解析に最適化されています。他の蛋白質の鎖誘導体化は、この標準的なプロトコルの変更を必要があります。 蛋白質の表現に適しています chemocompetent 細菌 (~ 100 μ L) を解凍 (例えば、エシェリヒア属大腸菌ロゼッタ BL21 (DE3) 細胞) 氷の上…

Representative Results

様々 な細胞内の目的地への逆行性蛋白輸送を調べるためには、ラベルを付けると、セル表面30から組換え融合蛋白質に従ってください抗 GFP 生物学: ナノボディでベースのツールを開設します。ここでは、このような細菌の生産 nanobodies 誘導体し、硫酸化解析による TGN 到着を調査する彼らの使用と同様、蛍光顕微鏡と免疫ブロット、取り込みを研究?…

Discussion

Nanobodies は、従来の抗体に比べて多くの利点を持つタンパク質バインダー足場の新たなクラスを表す: 彼らは小さく、安定した、単量体、高親和性と不足のジスルフィド結合33,35,のために選択できます。44,45細胞培養システムと生物発生生物学46,47,</s…

Disclosures

The authors have nothing to disclose.

Acknowledgements

この作品は、スイスの全米科学財団による助成金 31003A 162643 によって支えられました。ニコール Beuret とサポート Biozentrum イメージング コア施設 (IMCF) に感謝します

Materials

Anti-GFP antibody Sigma-Aldrich 118144600001 Product is distributed by Sigma-Aldrich, but manufactured by Roche
Anti-His6 antibody Bethyl Laboratories A190-114A
Anti-actin antibody EMD Millipore MAB1501
Goat anti-rabbit HRP Sigma-Aldrich A-0545
Goat anti-mouse HRP Sigma-Aldrich A-0168
4',6-diamidino-2-phenylindole (DAPI) Sigma-Aldrich D9542 dissolved in 1 x PBS/1%BSA
Dimethyl sulfoxide (DMSO) Applichem A3672
D-biotin Sigma-Aldrich B4501 dissolved in sterile 500 mM NaH2PO4 or DMSO
5-aminolevuilnic acid (dALA) hydrochloride Sigma-Aldrich A3785 dissolved in sterile water
DNase I Applichem A3778 dissolved in sterile water
Lysozyme Sigma-Aldrich 18037059001 Product is distributed by Sigma-Aldrich, but manufactured by Roche
Brefeldin A (BFA) Sigma-Aldrich B5936
Puromycin Invivogen ant-pr-1
Penicillin/Streptomycin Bioconcept 4-01F00-H
L-glutamine Applichem A3704
Dulbecco’s modified Eagle’s medium (DMEM) Sigma-Aldrich D5796
Fetal calf serum (FCS) Biowest S181B-500
Sulfur-35 as sodium sulfate Hartmann Analytics ARS0105 Product contains 5 mCi
Earle's balanced salts Sigma-Aldrich E6267
MEM amino acids (50 x) solution Sigma-Aldrich M5550
MEM vitamin solution (100 x) Sigma-Aldrich M6895
cOmplete, Mini Protease inhibitor cocktail Sigma-Aldrich 11836153001 Product is distributed by Sigma-Aldrich, but manufactured by Roche
Isopropyl-β-D-thiogalactopyranosid (IPTG) Applichem A1008 dissolved in sterile water, stock is 1 M
Carbenicillin disodium salt Applichem A1491 dissolved in sterile water, stock is 100 mg/mL
Kanamycin sulfate Applichem A1493 dissolved in sterile water, stock is 100 mg/mL
Coomassie-R (Brilliant Blue) Sigma-Aldrich B-0149
Paraformaldehyde (PFA) Applichem A3813
Bovine serum albumin (BSA) Sigma-Aldrich A2153
Fluoromount-G Southern Biotech 0100-01
Ni Sepharose High Performance GE Healthcare 17-5268-01
His GraviTrap columns GE Healthcare GE11-0033-99
His buffer kit GE Healthcare GE11-0034-00
Disposable PD10 desalting columns GE Healthcare GE17-0851-01
Mini-Protean TGX gels, 4-20%, 15-well Bio-Rad 456-1096
Dulbecco’s phosphate buffered saline (DPBS) w/o Ca2+/Mg2+ Sigma-Aldrich D8537
35-mm dishes Falcon 353001
6-well plates TPP 92406
Glass coverslips (No. 1.5H) VWR 631-0153
Phenylmethylsulfonyl fluoride (PMSF) Applichem A0999.0025 dissolved in 40% DMSO 60% isopropanol, stock in 500 mM
Tryptone Applichem A1553
Yeast extract Applichem A1552
Magnesium chloride hexahydrate Merck Millipore 105833 dissolved in sterile water, stock is 1 M
Calcium chloride dihydrate Merck Millipore 102382 dissolved in sterile water, stock is 1 M
Sodium chloride Merck Millipore 106404 dissolved in sterile water, stock is 5 M

References

  1. Johannes, L., Popoff, V. Tracing the retrograde route in protein trafficking. Cell. 135 (7), 1175-1187 (2008).
  2. Bonifacino, J. S., Rojas, R. Retrograde transport from endosomes to the trans-Golgi network. Nature Reviews. Molecular Cell Biology. 7 (8), 568-579 (2006).
  3. Duncan, J. R., Kornfeld, S. Intracellular movement of two mannose 6-phosphate receptors: return to the Golgi apparatus. Journal of Cell Biology. 106 (3), 617-628 (1988).
  4. Ghosh, P., Dahms, N. M., Kornfeld, S. Mannose 6-phosphate receptors: new twists in the tale. Nature Reviews. Molecular Cell Biology. 4 (3), 202-212 (2003).
  5. Doray, B., Ghosh, P., Griffith, J., Geuze, H. J., Kornfeld, S. Cooperation of GGAs and AP-1 in packaging MPRs at the trans-Golgi network. Science. 297 (5587), 1700-1703 (2002).
  6. Pallesen, L. T., Vaegter, C. B. Sortilin and SorLA regulate neuronal sorting of trophic and dementia-linked proteins. Molecular Neurobiology. 45 (2), 379-387 (2012).
  7. Gustafsen, C., et al. Sortilin and SorLA display distinct roles in processing and trafficking of amyloid precursor protein. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience. 33 (1), 64-71 (2013).
  8. Yu, J., et al. WLS retrograde transport to the endoplasmic reticulum during Wnt secretion. Developmental Cell. 29 (3), 277-291 (2014).
  9. Harterink, M., et al. A SNX3-dependent retromer pathway mediates retrograde transport of the Wnt sorting receptor Wntless and is required for Wnt secretion. Nature Cell Biology. 13 (8), 914-923 (2011).
  10. Port, F., et al. Wingless secretion promotes and requires retromer-dependent cycling of Wntless. Nature Cell Biology. 10 (2), 178-185 (2008).
  11. McGough, I. J., et al. SNX3-retromer requires an evolutionary conserved MON2:DOPEY2:ATP9A complex to mediate Wntless sorting and Wnt secretion. Nature Communications. 9 (1), 3737 (2018).
  12. Banting, G., Ponnambalam, S. TGN38 and its orthologues: roles in post-TGN vesicle formation and maintenance of TGN morphology. Biochimica et Biophysica Acta. 1355 (3), 209-217 (1997).
  13. Banting, G., Maile, R., Roquemore, E. P. The steady state distribution of humTGN46 is not significantly altered in cells defective in clathrin-mediated endocytosis. Journal of Cell Science. 111 (Pt 23), 3451-3458 (1998).
  14. Ponnambalam, S., Rabouille, C., Luzio, J. P., Nilsson, T., Warren, G. The TGN38 glycoprotein contains two non-overlapping signals that mediate localization to the trans-Golgi network. The Journal of Cell Biology. 125 (2), 253-268 (1994).
  15. Mallard, F., et al. Early/recycling endosomes-to-TGN transport involves two SNARE complexes and a Rab6 isoform. The Journal of Cell Biology. 156 (4), 653-664 (2002).
  16. Lewis, M. J., Nichols, B. J., Prescianotto-Baschong, C., Riezman, H., Pelham, H. R. Specific retrieval of the exocytic SNARE Snc1p from early yeast endosomes. Molecular Biology of the Cell. 11 (1), 23-38 (2000).
  17. Hirst, J., et al. Distinct and overlapping roles for AP-1 and GGAs revealed by the "knocksideways" system. Current biology. 22 (18), 1711-1716 (2012).
  18. Burgos, P. V., et al. Sorting of the Alzheimer’s disease amyloid precursor protein mediated by the AP-4 complex. Developmental Cell. 18 (3), 425-436 (2010).
  19. Choy, R. W., Cheng, Z., Schekman, R. Amyloid precursor protein (APP) traffics from the cell surface via endosomes for amyloid beta (Abeta) production in the trans-Golgi network. Proceedings of the National Academy of Sciences of the United States. 109 (30), E2077-E2082 (2012).
  20. Seifert, W., et al. The progressive ankylosis protein ANK facilitates clathrin- and adaptor-mediated membrane traffic at the trans-Golgi network-to-endosome interface. Human Molecular Genetics. 25 (17), 3836-3848 (2016).
  21. Tabuchi, M., Yanatori, I., Kawai, Y., Kishi, F. Retromer-mediated direct sorting is required for proper endosomal recycling of the mammalian iron transporter DMT1. Journal of Cell Science. 123 (Pt 5), 756-766 (2010).
  22. La Fontaine, S., Mercer, J. F. Trafficking of the copper-ATPases, ATP7A and ATP7B: role in copper homeostasis. Archives of Biochemistry and Biophysics. 463 (2), 149-167 (2007).
  23. Burd, C. G. Physiology and pathology of endosome-to-Golgi retrograde sorting. Traffic. 12 (8), 948-955 (2011).
  24. Chia, P. Z., Gasnereau, I., Lieu, Z. Z., Gleeson, P. A. Rab9-dependent retrograde transport and endosomal sorting of the endopeptidase furin. Journal of Cell Science. 124 (Pt 14), 2401-2413 (2011).
  25. Wahle, T., et al. GGA proteins regulate retrograde transport of BACE1 from endosomes to the trans-Golgi network. Molecular and Cellular Neurosciences. 29 (3), 453-461 (2005).
  26. Johannes, L., Goud, B. Surfing on a retrograde wave: how does Shiga toxin reach the endoplasmic reticulum. Trends in Cell Biology. 8 (4), 158-162 (1998).
  27. van Deurs, B., Tonnessen, T. I., Petersen, O. W., Sandvig, K., Olsnes, S. Routing of internalized ricin and ricin conjugates to the Golgi complex. Journal of Cell Biology. 102 (1), 37-47 (1986).
  28. Sandvig, K., van Deurs, B. Membrane traffic exploited by protein toxins. Annual Review of Cell and Developmental Biology. 18, 1-24 (2002).
  29. Sandvig, K., et al. Retrograde transport of endocytosed Shiga toxin to the endoplasmic reticulum. Nature. 358 (6386), 510-512 (1992).
  30. Buser, D. P., Schleicher, K. D., Prescianotto-Baschong, C., Spiess, M. A versatile nanobody-based toolkit to analyze retrograde transport from the cell surface. Proceedings of the National Academy of Sciences of the United States. 115 (27), E6227-E6236 (2018).
  31. Hamers-Casterman, C., et al. Naturally occurring antibodies devoid of light chains. Nature. 363 (6428), 446-448 (1993).
  32. Greenberg, A. S., et al. A new antigen receptor gene family that undergoes rearrangement and extensive somatic diversification in sharks. Nature. 374 (6518), 168-173 (1995).
  33. Bieli, D., et al. Development and Application of Functionalized Protein Binders in Multicellular Organisms. International Review of Cell and Molecular Biology. 325, 181-213 (2016).
  34. Muyldermans, S. Nanobodies: natural single-domain antibodies. Annual Review of Biochemistry. 82, 775-797 (2013).
  35. Helma, J., Cardoso, M. C., Muyldermans, S., Leonhardt, H. Nanobodies and recombinant binders in cell biology. Journal of Cell Biology. 209 (5), 633-644 (2015).
  36. Harmansa, S., Affolter, M. Protein binders and their applications in developmental biology. Development. 145 (2), (2018).
  37. Lam, S. S., et al. Directed evolution of APEX2 for electron microscopy and proximity labeling. Nature Methods. 12 (1), 51-54 (2015).
  38. Huttner, W. B. Tyrosine sulfation and the secretory pathway. Annual Review of Physiology. 50, 363-376 (1988).
  39. Baeuerle, P. A., Huttner, W. B. Tyrosine sulfation is a trans-Golgi-specific protein modification. The Journal of Cell Biology. 105 (6 Pt 1), 2655-2664 (1987).
  40. Stone, M. J., Chuang, S., Hou, X., Shoham, M., Zhu, J. Z. Tyrosine sulfation: an increasingly recognised post-translational modification of secreted proteins. New Biotechnology. 25 (5), 299-317 (2009).
  41. Leitinger, B., Brown, J. L., Spiess, M. Tagging secretory and membrane proteins with a tyrosine sulfation site. Tyrosine sulfation precedes galactosylation and sialylation in COS-7 cells. The Journal of Biological Chemistry. 269 (11), 8115-8121 (1994).
  42. Snider, M. D., Rogers, O. C. Intracellular movement of cell surface receptors after endocytosis: resialylation of asialo-transferrin receptor in human erythroleukemia cells. Journal of Cell Biology. 100 (3), 826-834 (1985).
  43. Shi, G., et al. SNAP-tag based proteomics approach for the study of the retrograde route. Traffic. 13 (7), 914-925 (2012).
  44. Kaiser, P. D., Maier, J., Traenkle, B., Emele, F., Rothbauer, U. Recent progress in generating intracellular functional antibody fragments to target and trace cellular components in living cells. Biochimica et Biophysica Acta. 1844 (11), 1933-1942 (2014).
  45. Dmitriev, O. Y., Lutsenko, S., Muyldermans, S. Nanobodies as Probes for Protein Dynamics in Vitro and in Cells. The Journal of Biological Chemistry. 291 (8), 3767-3775 (2016).
  46. Harmansa, S., Hamaratoglu, F., Affolter, M., Caussinus, E. Dpp spreading is required for medial but not for lateral wing disc growth. Nature. 527 (7578), 317-322 (2015).
  47. Harmansa, S., Alborelli, I., Bieli, D., Caussinus, E., Affolter, M. A nanobody-based toolset to investigate the role of protein localization and dispersal in Drosophila. eLife. 6, (2017).
  48. Caussinus, E., Kanca, O., Affolter, M. Fluorescent fusion protein knockout mediated by anti-GFP nanobody. Nature Structural & Molecular Biology. 19 (1), 117-121 (2012).
  49. Rothbauer, U., et al. Targeting and tracing antigens in live cells with fluorescent nanobodies. Nature Methods. 3 (11), 887-889 (2006).
  50. Pardon, E., et al. A general protocol for the generation of Nanobodies for structural biology. Nature Protocols. 9 (3), 674-693 (2014).
  51. Steyaert, J., Kobilka, B. K. Nanobody stabilization of G protein-coupled receptor conformational states. Current Opinion in Structural Biology. 21 (4), 567-572 (2011).
  52. Manglik, A., Kobilka, B. K., Steyaert, J. Nanobodies to Study G Protein-Coupled Receptor Structure and Function. Annual Review of Pharmacology and Toxicology. 57, 19-37 (2017).
  53. Zimmermann, I., et al. Synthetic single domain antibodies for the conformational trapping of membrane proteins. eLife. 7, (2018).
  54. De Genst, E., et al. Molecular basis for the preferential cleft recognition by dromedary heavy-chain antibodies. Proceedings of the National Academy of Sciences of the United States. 103 (12), 4586-4591 (2006).
  55. Truttmann, M. C., et al. HypE-specific nanobodies as tools to modulate HypE-mediated target AMPylation. The Journal of Biological Chemistry. 290 (14), 9087-9100 (2015).
  56. Ashour, J., et al. Intracellular expression of camelid single-domain antibodies specific for influenza virus nucleoprotein uncovers distinct features of its nuclear localization. Journal of Virology. 89 (5), 2792-2800 (2015).
  57. Yamagata, M., Sanes, J. R. Reporter-nanobody fusions (RANbodies) as versatile, small, sensitive immunohistochemical reagents. Proceedings of the National Academy of Sciences of the United States. 115 (9), 2126-2131 (2018).
  58. Pleiner, T., Bates, M., Gorlich, D. A toolbox of anti-mouse and anti-rabbit IgG secondary nanobodies. Journal of Cell Biology. 217 (3), 1143-1154 (2018).
  59. Fridy, P. C., et al. A robust pipeline for rapid production of versatile nanobody repertoires. Nature Methods. 11 (12), 1253-1260 (2014).
  60. Robinson, M. S., Sahlender, D. A., Foster, S. D. Rapid inactivation of proteins by rapamycin-induced rerouting to mitochondria. Developmental Cell. 18 (2), 324-331 (2010).
  61. Meyer, C., et al. mu1A-adaptin-deficient mice: lethality, loss of AP-1 binding and rerouting of mannose 6-phosphate receptors. The EMBO Journal. 19 (10), 2193-2203 (2000).
  62. Utskarpen, A., Slagsvold, H. H., Iversen, T. G., Walchli, S., Sandvig, K. Transport of ricin from endosomes to the Golgi apparatus is regulated by Rab6A and Rab6A. Traffic. 7 (6), 663-672 (2006).
  63. Mallard, F., Johannes, L. Shiga toxin B-subunit as a tool to study retrograde transport. Methods in Molecular Medicine. 73, 209-220 (2003).
  64. Mallard, F., et al. Direct pathway from early/recycling endosomes to the Golgi apparatus revealed through the study of shiga toxin B-fragment transport. Journal of Cell Biology. 143 (4), 973-990 (1998).
  65. Plaut, R. D., Carbonetti, N. H. Retrograde transport of pertussis toxin in the mammalian cell. Cellular Microbiology. 10 (5), 1130-1139 (2008).
  66. Johannes, L., Tenza, D., Antony, C., Goud, B. Retrograde transport of KDEL-bearing B-fragment of Shiga toxin. The Journal of Biological Chemistry. 272 (31), 19554-19561 (1997).
  67. Saint-Pol, A., et al. Clathrin adaptor epsinR is required for retrograde sorting on early endosomal membranes. Developmental Cell. 6 (4), 525-538 (2004).
  68. Amessou, M., Popoff, V., Yelamos, B., Saint-Pol, A., Johannes, L. Measuring retrograde transport to the trans-Golgi network. Current Protocols in Cell Biology. , (2006).
  69. Niewoehner, J., et al. Increased brain penetration and potency of a therapeutic antibody using a monovalent molecular shuttle. Neuron. 81 (1), 49-60 (2014).
  70. Villasenor, R., Schilling, M., Sundaresan, J., Lutz, Y., Collin, L. Sorting Tubules Regulate Blood-Brain Barrier Transcytosis. Cell Reports. 21 (11), 3256-3270 (2017).
  71. Dick, G., Grondahl, F., Prydz, K. Overexpression of the 3′-phosphoadenosine 5′-phosphosulfate (PAPS) transporter 1 increases sulfation of chondroitin sulfate in the apical pathway of MDCK II cells. Glycobiology. 18 (1), 53-65 (2008).
  72. Fruholz, S., Fassler, F., Kolukisaoglu, U., Pimpl, P. Nanobody-triggered lockdown of VSRs reveals ligand reloading in the Golgi. Nature Communications. 9 (1), 643 (2018).

Play Video

Cite This Article
Buser, D. P., Spiess, M. Analysis of Endocytic Uptake and Retrograde Transport to the Trans-Golgi Network Using Functionalized Nanobodies in Cultured Cells. J. Vis. Exp. (144), e59111, doi:10.3791/59111 (2019).

View Video